\mathbb{TCS} Technical Report

Contributions to the Classification for Testability: Four Universal and One Existential Quantifier

by

CHARLES JORDAN AND THOMAS ZEUGMANN

Division of Computer Science

Report Series A

November 27, 2009

Hokkaido University Graduate School of Information Science and Technology

Email: skip@ist.hokudai.ac.jp

Phone: +81-011-706-7675 Fax: +81-011-706-7675

Contributions to the Classification for Testability: Four Universal and One Existential Quantifier

Charles Jordan^{*} and Thomas Zeugmann^{**}

Division of Computer Science Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan {skip,thomas}@ist.hokudai.ac.jp

Abstract. In property testing, the goal is to distinguish between structures that have some desired property and those that are *far* from having the property, after examining only a small, random sample of the structure. We focus on the classification of first-order sentences based on their quantifier prefixes and vocabulary into testable and untestable classes. This classification was begun by Alon *et al.* [1] who showed that graph properties expressible with quantifier patterns $\exists^*\forall^*$ are testable but that there is an untestable graph property expressible with a quantifier pattern $\forall^*\exists^*$. We simplify their untestable example and therefore show that there is an untestable graph property expressible with each of the following quantifier patterns: $\forall^4\exists, \forall^3\exists\forall, \forall^2\exists\forall^2$ and $\forall\exists\forall^3$.

1 Introduction

In property testing, we take a small, random sample of a large structure and wish to determine if the structure has some desired property or if it is far from having the property. The hope is that we can gain efficiency in return for not deciding the problem exactly. We focus on the classification problem for testability, where the goal is to determine exactly which prefix vocabulary classes of first-order logic are testable and which are not.

Property testing was first introduced in the context of program verification (cf. Rubinfeld and Sudan [11] and Blum *et al.* [5]). Goldreich *et al.* [9] initiated the study of combinatorial property testing, focusing on graphs. Alon *et al.* [1] first considered the classification problem for testability, although they restricted their attention to undirected, loop-free graphs. They showed that all such first-order sentences¹ with quantifier prefixes of the form $\exists^*\forall^*$ express testable properties. They also showed that there exists an untestable property expressible

 $^{^{\}star}$ Supported by a Grant-in-Aid for JSPS Fellows under Grant No. 2100195209.

^{**} Supported by MEXT Grand-in-Aid for Scientific Research on Priority Areas under Grant No. 21013001.

¹ We assume throughout that all sentences are in prenex normal form.

with the prefix $\forall^* \exists^*$. The example they give is (essentially) an encoding of graph isomorphism that can be expressed with a quantifier prefix of the form $\forall^{12} \exists^5$.

In studying the classification problem, it is necessary to *minimize* the number of quantifiers needed to express untestable properties. Additionally, the firstorder theory of graphs is not restricted to undirected, loop-free graphs. Here, we show that there exists an untestable property of directed graphs that is expressible in first-order sentences with prefixes $\forall^4 \exists, \forall^3 \exists \forall, \forall^2 \exists \forall^2, \text{and } \forall \exists \forall^3$ (see Theorem 2 for a more formal statement). That is, four universal quantifiers and one existential quantifier, when the existential quantifier follows at least one universal quantifier, suffice to express an untestable graph property. The proof is a modification of the proof in Alon *et al.* [1], which is made possible by the presence of directed edges and loops.

The results in Jordan and Zeugmann [10] show that one universal quantifier is not sufficient to express an untestable property (regardless of the vocabulary), and so it would be interesting to determine the status of prefixes containing two and three universal quantifiers.

2 Preliminaries

In property testing, the goal is always to distinguish structures that have some property from those that are far from having the property. We are particularly interested in properties that are first-order definable, and so we begin by defining our logic. Enderton [8] provides a more detailed introduction.

The atomic terms are the (countable) variable symbols x_i . There are no function or constant symbols, and so the terms are exactly the atomic terms. The atomic formulas are $E(x_i, x_j)$ and $x_i = x_j$, for any two variable symbols x_i and x_j . The formulas are built from the atomic formulas using the Boolean connectives and first-order quantifiers (\forall, \exists) in the usual way. The *well-formed* formulas or *sentences* are the formulas which contain no free variables. We have no further use for formulas that are not well-formed, and so we will refer to the well-formed formulas simply as *formulas*.

Our logic contains a special equality symbol (=) which we will always interpret as true equality (i.e., $x_i = x_j$ is true iff the two symbols refer to the same object). It also contains a single binary predicate symbol, which we have given the name E. Of course, the name of this symbol is not important; any fixed, unique name could have been chosen.

A structure is an object that allows us to interpret a sentence in our logic. It consists of a finite universe U over which the variable symbols are allowed to range, and a binary relation E corresponding to the symbol E in our logic. Any such object can be considered a (directed) graph, and we will now refer to these structures as graphs. See Diestel [7] for an introduction to graph theory.

Definition 1. A graph $A = (U^A, E^A)$ is a pair consisting of a finite set of vertices U^A and a binary edge relation $E^A \subseteq U^A \times U^A$.

The natural numbers are denoted by $\mathbb{N} := \{0, 1, \ldots\}$. We denote the set of graphs on exactly *n* vertices by \mathcal{G}^n and the set of all graphs by $\mathcal{G} := \bigcup_{n \in \mathbb{N}} \mathcal{G}^n$. The *size* of the universe of a graph $A = (U^A, E^A)$ is $\#(A) := |U^A|$.

A property P is any subset of \mathcal{G} . Sentences are interpreted in the usual way, and so we can decide $A \models \varphi$ for any fixed graph A and first-order sentence φ . Each sentence φ therefore defines a property, namely the set of its models,

$$P_{\varphi} := \{A \mid A \in \mathcal{G} \text{ and } A \models \varphi\}.$$

The properties that we use in the proof of Theorem 2 involve encodings of isomorphisms. Graphs $A = (U^A, E^A)$ and $B = (U^B, E^B)$ are *isomorphic* if there is a bijection $f : U^A \mapsto U^B$ such that for all $(x, y) \in U^A \times U^A$, $(x, y) \in E^A$ iff $(f(x), f(y)) \in E^B$. We say that a property P is *closed under isomorphisms* if for all isomorphic $A, B \in \mathcal{G}$, it is true that $A \in P$ iff $B \in P$. All properties expressible in our logic are closed under isomorphisms.

The goal in property testing is to distinguish between structures that have properties and structures that are *far* from having them. This requires a distance measure, which we define next. In the following, \oplus denotes exclusive-or and E^A is the edge relation of A.

Definition 2. Let $A = (U, E^A)$ and $B = (U, E^B)$ be any two graphs such that #(A) = #(B) = n. The distance between A and B is

dist(A, B) :=
$$\frac{|\{(x_1, x_2) \mid x_1, x_2 \in U \text{ and } E^A(x_1, x_2) \oplus E^B(x_1, x_2)\}|}{n^2}$$

The dist distance is the fraction of edges on which the two graphs disagree. This is the *dense graph* model introduced by Goldreich *et al.* [9] and is essentially based on the adjacency matrix representation. The distance generalizes to properties in the following way.

Definition 3. Let $P \subseteq \mathcal{G}$ be a property of graphs and let $A \in \mathcal{G}^n$ be a graph with n vertices. Then,

$$\operatorname{dist}(A, P) := \min_{A' \in \mathcal{G}^n \cap P} \operatorname{dist}(A, A')$$

We are now able to define property testing itself. The following definitions are typical, but we will also mention several variations.

Definition 4. An ε -tester for property P is a randomized algorithm given an oracle which answers queries for the universe size and queries for edges on desired pairs in a graph A. The tester must accept with probability at least 2/3 if A has P and must reject with probability at least 2/3 if dist $(A, P) \ge \varepsilon$.

Definition 5. A property P is testable if for every $\varepsilon > 0$ there is an ε -tester for P making a number of queries which is upper-bounded by a function depending only on ε .

We allow different ε -testers for each $\varepsilon > 0$ and our definitions are therefore non-uniform. The uniform case is strictly more difficult (see, e.g., Alon and Shapira [3]). We are interested in proving untestability, and our results hold even in the non-uniform case. In *oblivious* testing (see Alon and Shapira [2]), the testers are not given access to the size of the universe. Again, our results hold in the more general case where the testers may make decisions based on the size of the universe. In a similar way, the number of loops in a graph is asymptotically insignificant compared to the number of possible non-loops. Modifying the definition of distance to account for this makes testing strictly more difficult (see Jordan and Zeugmann [10]) and so we use the more general definition above.

However, the (possible) loops seem to affect the notion of *indistinguishability* defined by Alon *et al.* [1]. We use the following modification of Definition 2.

Definition 6. Let $A = (U, E^A)$ and $B = (U, E^B)$ be any two graphs such that #(A) = #(B) = n. For convenience, let

$$d_1(A,B) := \frac{|\{x \mid x \in U \text{ and } E^A(x,x) \oplus E^B(x,x)\}|}{n}, \text{ and}$$
$$d_2(A,B) := \frac{|\{(x_1,x_2) \mid x_1, x_2 \in U, x_1 \neq x_2, \text{ and } E^A(x_1,x_2) \oplus E^B(x_1,x_2)\}|}{n^2}$$

The mr-distance between A and B is

$$mrdist(A, B) := max \{ d_1(A, B), d_2(A, B) \}$$
.

That is, although the number of loops is asymptotically insigificant, a tester can easily restrict its queries to the form (x, x) and distinguish between graphs that differ only in loops. Definition 6 is a special case of a definition from Jordan and Zeugmann [10]. We use the following simple variation of indistinguishability for graphs that may contain loops.

Definition 7. Two properties P and Q of graphs are indistinguishable if they are closed under isomorphisms and for every $\varepsilon > 0$ there exists an N_{ε} such that for any graph A with universe of size $n \ge N_{\varepsilon}$, if A has P then $\operatorname{mrdist}(A, Q) \le \varepsilon$ and if A has Q then $\operatorname{mrdist}(A, P) \le \varepsilon$.

The important fact to note is that indistinguishability preserves testability. The proof of the following is analogous to that given in Alon *et al.* [1].

Theorem 1. If P and Q are indistinguishable, then P is testable if and only if Q is testable.

Our classification definitions are from Börger *et al.* [6] except that we omit function symbols. We omit a detailed discussion, but the following is for completeness. Let Π be a string over the four-character alphabet $\{\exists, \exists^*, \forall, \forall^*\}$. Then $[\Pi, (0, 1)]_{=}$ is the set of sentences in prenex normal form which satisfy the following conditions:

- 1. The quantifier prefix is contained in the language specified by the regular expression Π .
- 2. There are zero (0) monadic predicate symbols.
- 3. There is at most one (1) binary predicate symbol.
- 4. There are no other predicate symbols.
- 5. Equality (=) may additionally appear.

That is, $[\Pi, (0, 1)]_{=}$ is the set of sentences in the logic that we have defined above whose quantifier prefixes in prenex normal form match Π .

3 An Untestable Property

We will begin by defining property P, which is essentially the graph isomorphism problem for undirected loop-free graphs encoded in directed graphs that may contain loops. We will begin by showing in Lemma 1 that P is indistinguishable from property P_f (cf. Definition 9) which is expressible in any of the prefix vocabulary classes mentioned in Theorem 2. We will then show that P is not testable. Indistinguishability preserves testability and so this implies that P_f is also untestable, which will suffice to show the following theorem.

Theorem 2. The following prefix classes are not testable:

 $\begin{array}{ll} 1. \ [\forall^4 \exists, (0,1)]_{=} \\ 2. \ [\forall^3 \exists \forall, (0,1)]_{=} \\ 3. \ [\forall^2 \exists \forall^2, (0,1)]_{=} \\ 4. \ [\forall \exists \forall^3, (0,1)]_{=} \end{array}$

We define property P as follows. First, a graph that has property P must consist of an even number of vertices, of which exactly half have loops. The subgraph induced by the vertices with loops must be isomorphic to that induced by the vertices without loops, ignoring all loops, and there must be no edges connecting the vertices with loops to those without loops. Finally, all edges must be *undirected* (i.e., an edge from x to y implies an edge from y to x). We refer to such undirected edges as *paired edges*.

Definition 8. A graph $G \in \mathcal{G}^n$ has P iff the following are true.

- 1. For some s, n = 2s.
- 2. There are exactly s vertices x satisfying E(x, x). We will refer to the set of such vertices as H_1 and to the remaining s vertices as H_2 .
- 3. The substructure induced by H_1 is isomorphic to that induced by H_2 when all loops are removed. That is, there is a bijection f from H_1 to H_2 such that for distinct $x, y \in H_1$, it is true that $G \models E(x, y)$ iff $G \models E(f(x), f(y))$.
- 4. There are no edges between H_1 and H_2 .
- 5. All edges are undirected.

Graph isomorphism is not directly expressible in first-order logic, and so we use the following encoding where the bijection f is made explicit by adding n edges between H_1 and H_2 .

Definition 9. A graph $G \in \mathcal{G}^n$ has P_f iff the following are true.

- 1. For every vertex x, if E(x, x) then there is an edge from x to exactly one y such that $\neg E(y, y)$.
- 2. For every vertex x, if $\neg E(x, x)$ then there is an edge from x to exactly one y such that E(y, y).
- 3. For all vertices x and y, E(x, y) iff E(y, x).
- 4. For all pair-wise distinct vertices x_1, x_2, x_3, x_4 , if $E(x_1, x_1)$, $\neg E(x_2, x_2)$, $E(x_3, x_3), \neg E(x_4, x_4), E(x_1, x_2)$ and $E(x_3, x_4)$, then $E(x_1, x_3)$ iff $E(x_2, x_4)$.

Expressing Conditions 1 and 2 as "there is at most one such y" and "there is at least one such y," P_f can be expressed in each of the classes $[\forall^4 \exists, (0, 1)]_{=}, [\forall^3 \exists \forall, (0, 1)]_{=}, [\forall^2 \exists \forall^2, (0, 1)]_{=}$ and $[\forall \exists \forall^3, (0, 1)]_{=}$.

For example, in the class $[\forall \exists \forall^3, (0, 1)]_{=}$, we can express P_f by

$$\begin{aligned} \forall x_1 \exists x_2 \forall x_3 \forall x_4 \forall x_5 : \\ & \left(E(x_1, x_1) \to (\neg E(x_2, x_2) \land E(x_1, x_2) \land \\ & ((\neg E(x_3, x_3) \land \neg E(x_4, x_4) \land E(x_1, x_3) \land E(x_1, x_4)) \to x_3 = x_4)) \right) \land \\ & \left(\neg E(x_1, x_1) \to (E(x_2, x_2) \land E(x_1, x_2) \land \\ & ((E(x_3, x_3) \land E(x_4, x_4) \land E(x_1, x_3) \land E(x_1, x_4)) \to x_3 = x_4))) \right) \land \\ & \left(E(x_1, x_3) \to E(x_3, x_1) \right) \land \\ & \left(\left[E(x_1, x_1) \land E(x_4, x_4) \land \neg E(x_3, x_3) \land \neg E(x_5, x_5) \land E(x_1, x_3) \land E(x_4, x_5) \land \\ & x_1 \neq x_3 \land x_1 \neq x_4 \land x_1 \neq x_5 \land x_3 \neq x_4 \land x_3 \neq x_5 \land x_4 \neq x_5 \right] \to \\ & \left(E(x_1, x_4) \leftrightarrow E(x_3, x_5)) \right) \end{aligned}$$

To express P_f in the other classes of Theorem 2 it is sufficient to change only the quantifier prefix.

The two properties P and P_f differ only in the edges which make the isomorphism explicit in P_f but are forbidden in P. There are at most n such edges, all of which are not loops. This suffices to prove the following.

Lemma 1. Properties P and P_f are indistinguishable.

Proof. Let $\varepsilon > 0$ be arbitrary and let $N_{\varepsilon} = \varepsilon^{-1}$. Assume that G is a structure that has property P and that $\#(G) > N_{\varepsilon}$. We will show that $\operatorname{mrdist}(G, P_f) < \varepsilon$.

Structure G has P and so there is a bijection f satisfying Condition 3 of Definition 8. For all $x \in H_1$, we add the edges E(x, f(x)) and E(f(x), x) and call the result G'. Property P_f differs from P only in that the isomorphism is

made explicit by the edges connecting loops and non-loops, and so G' has P_f . Indeed, it satisfies Conditions 1 and 2 of Definition 9 because G had no edges between loops and non-loops and we have connected each to exactly one of the other, following the bijection f. Next, G' satisfies Condition 3 of Definition 9 because G satisfied Condition 5 of Definition 8 and we added only paired edges. Finally, G' satisfies Condition 4 of Definition 9 because the edges between loops and non-loops follow the isomorphism f from Condition 3 of Definition 8.

We have added exactly n (directed) edges, none of which are loops and so $\operatorname{mrdist}(G, P) \leq \operatorname{mrdist}(G, G') = 0 + n/n^2 < \varepsilon$, where the inequality holds for $n > N_{\varepsilon}$. The converse is analogous; given a G that has property P_f , we simply remove the n edges between loops and non-loops after using them to construct the isomorphism f.

Properties P and P_f are indistinguishable. Testability is preserved by indistinguishability (cf. Theorem 1) and therefore showing that P is not testable suffices to prove that P_f is not testable (and therefore Theorem 2). The proof closely follows that of Alon *et al.* [1]. The crucial lemma is the following, a combination of Lemmata 7.3 and 7.4 from Alon *et al.* [1]. We use $\operatorname{count}_H(T)$ to refer to the number of times that a graph T occurs as an induced subgraph in H. A *bipartite graph* is a graph where we can partition the vertices into two sets H_1 and H_2 such that there are no edges "internal" to the partitions. That is, for all $x_1, y_1 \in H_1$ and $x_2, y_2 \in H_2$, $\neg E(x_1, y_1)$ and $\neg E(x_2, y_2)$.

Lemma 2 (Alon et al. [1]). There exists a constant $\varepsilon' > 0$ such that for every $D \in \mathbb{N}$, there exist two undirected bipartite graphs H = H(D) and H' = H'(D) satisfying the following conditions.

- 1. Both H and H' have a bipartition into classes U_1 and U_2 , each of size t.
- 2. In both H and H', for all subgraphs X with size $t/3 \le \#(X) \le t$, there are more than $t^2/18$ undirected edges between X and the remaining part of the graph.
- 3. The minimum degree of both H and H' is at least t/3.
- 4. dist $(H, H') \ge \varepsilon'$.
- 5. For all D-element graphs T, $\operatorname{count}_H(T) = \operatorname{count}_{H'}(T)$.

It is worth noting that the above is for undirected, loop-free graphs. However, bipartite graphs never have loops and "undirected" in our setting results in paired edges. It is easy to show that if two structures agree on the counts for all size D induced subgraphs, they agree on the counts for all induced subgraphs of size at most D. This is done by applying Lemma 3 inductively.

Lemma 3. Let H and H' be two graphs, both of size s, and let $2 < D \leq s$. If for every graph T of size D, $\operatorname{count}_H(T) = \operatorname{count}_{H'}(T)$, then for every graph T'of size D - 1, $\operatorname{count}_H(T') = \operatorname{count}_{H'}(T')$. *Proof.* Assume H and H' satisfy the initial conditions of Lemma 3, but that there exists a T' of size D - 1 such that $\operatorname{count}_H(T') \neq \operatorname{count}_{H'}(T')$. Let $C = \{T \mid \#(T) = D \text{ and } T \text{ contains } T' \text{ as an induced subgraph}\}.$

Note that $\sum_{T \in C} \operatorname{count}_H(T) \operatorname{count}_T(T') = \operatorname{count}_H(T')(s - D + 1)$ and likewise for $\sum_{T \in C} \operatorname{count}_{H'}(T) \operatorname{count}_T(T')$. We have assumed that H and H' satisfy $\operatorname{count}_H(T) = \operatorname{count}_{H'}(T)$ for $T \in C$, but $\operatorname{count}_H(T') \neq \operatorname{count}_{H'}(T')$, giving a contradiction and the Lemma follows.

Recall that testing is easiest under the dist definition, and so Lemma 4 also implies that P is not testable under the mrdist definition.

Lemma 4. Property P is not testable under the dist definition.

Proof. Assume that P is testable. Then, there exists an ε -tester for

$$\varepsilon := 1/2 \min \left\{ \varepsilon'/4, 1/72 \right\}$$

where ε' is the constant from Lemma 2. We can assume without loss of generality that the tester queries all edges in a random sample of $D := D(\varepsilon)$ vertices.

Consider the graph G which contains two copies of the H = H(D) from Lemma 2, where one of the copies is marked by loops on each vertex and there are no edges between the copies. This graph has property P, and so the tester must accept it with probability at least 2/3. Next, consider the graph G' which contains one copy of H marked by loops and one copy of H', again where there are no edges between the two (induced) subgraphs. Graph G' is such that $dist(G', P) \ge \varepsilon$ (cf. Lemma 5) and so it must be rejected with probability at least 2/3. Both G and G' consist of two bipartite graphs, each of which has a bipartition into two classes of size t, and so #(G) = #(G') = 4t.

However, G and G' both contain exactly the same number of each induced subgraph with D vertices. This is because both have loops on exactly half of the vertices and the two halves are not connected by any edges. Some of the Dvertices must be in the first copy of H and the others in the second H (resp. H'). By Lemma 3, H and H' contain the same number of each induced subgraph with size at most D. The tester therefore obtains any fixed sample with the same probability in G and G' and is unable to distinguish between them. It is therefore unable to accept G with probability 2/3 and reject G' with probability 2/3. This completes the proof, conditional on Lemma 5.

Lemma 5. The graph G' is such that $dist(G', P) \ge \varepsilon$.

Proof. Assume that $\operatorname{dist}(G', P) < \varepsilon$. Then, there is an $M \in P$ such that $\operatorname{dist}(G', M) < \varepsilon$. Let M_1 be the set of vertices with loops in M and M_2 the set of vertices without loops. We will refer to the vertices with loops in G' as H and to those without loops as H'. Without loss of generality, assume that $|M_1 \cap H| \geq |M_1 \cap H'|$. Then, $|M_1 \cap H| \geq t$. We let α_1 be the set $M_1 \setminus H$ and α_2 be $M_2 \setminus H'$. Note that $|\alpha_1| = |\alpha_2|$ and $|\alpha_1| \leq t$ because $|M_1 \cap H| \geq t$.

Informally, M is formed by moving the vertices α_1 from H' to H and the vertices α_2 from H to H', and then possibly making other changes. There are three cases, which we will consider in order.

- 1. $|\alpha_1| = 0.$ 2. $|\alpha_1| \ge t/3.$ 3. $0 < \alpha_1 < t/3.$
- If $|\alpha_1| = 0$, then we can construct M from G' without exchanging vertices between H and H', and in particular, construct H' from H (ignoring loops), by making less than $\varepsilon(4t)^2$ modifications. However, dist $(H, H') \ge \varepsilon'$ by Lemma 2

between H and H', and in particular, construct H' from H (ignoring loops), by making less than $\varepsilon(4t)^2$ modifications. However, dist $(H, H') \ge \varepsilon'$ by Lemma 2 and so this must require at least $\varepsilon'(2t)^2$ modifications. By definition, $\varepsilon < \varepsilon'/4$ so $\varepsilon(4t)^2 < \varepsilon'(2t)^2$. The first case is therefore not possible.

Recall that $|\alpha_1| \leq t$. If $|\alpha_1| \geq t/3$, then by Condition 2 of Lemma 2 there exists at least $t^2/18$ undirected edges between α_1 and $H' \setminus \alpha_1$ and between α_2 and $H \setminus \alpha_2$. All of these edges must be removed to satisfy P because each would connect a vertex with a loop to a vertex without a loop. Therefore, $dist(G', M) \geq \frac{4t^2/18}{(4t)^2} = 1/72$. But, $\varepsilon < 1/72$ and so the second case is not possible.

Therefore, it must be that $0 < |\alpha_1| < t/3$. Here, we will show that it must be the case that α_1 and α_2 are relatively far apart. If they are not far apart, then it is possible to modify them instead of swapping them. This essentially results in the first case considered above. Condition 3 of Lemma 2 requires that each vertex has relatively high degree. These edges can be either internal to α_1 (resp. α_2) or connecting α_1 (α_2) with $H' \setminus \alpha_1$ ($H \setminus \alpha_2$). If α_1 and α_2 are relatively far apart, then we will see that this forces too many edges "outside" of α_1 (resp. α_2), resulting in a similar situation to the second case considered above.

We have assumed that $\operatorname{dist}(G', M) < \varepsilon$ and that we can construct M from G' by making less than $\varepsilon(4t)^2$ modifications if we move α_1 to H and α_2 to H'. This entails the following modifications.

- 1. Removing all edges connecting α_1 to $H' \setminus \alpha_1$.
- 2. Removing all edges connecting α_2 to $H \setminus \alpha_2$.
- 3. Adding any required edges between α_1 and $H \setminus \alpha_2$.
- 4. Adding any required edges between α_2 and $H' \setminus \alpha_1$.
- 5. Changing $\alpha_1, \alpha_2, H \setminus \alpha_2$ and $H' \setminus \alpha_1$ to their final forms.

We can assume that the total number of modifications is less than $\varepsilon(4t)^2$. It must be that $\operatorname{dist}(\alpha_1, \alpha_2)|\alpha_1|^2/(4t)^2 + \varepsilon \geq \varepsilon'/4$. If this does not hold, then we could first modify α_1 to make it identical to α_2 and then make H' identical to M_2 . Next, M_2 is identical to M_1 , which we could make identical to H. This would require less than $\varepsilon'(2t)^2$ modifications, which would violate Lemma 2. Therefore,

$$\operatorname{dist}(\alpha_1, \alpha_2) \ge \frac{16(\varepsilon'/4 - \varepsilon)t^2}{|\alpha_1|^2} \,. \tag{1}$$

If both α_1 and α_2 are complete graphs then they cannot be far apart. Given that all vertices in α_1 (α_2 is analogous) have degree at least t/3, then there must be at least

$$|\alpha_1|(t/3 - |\alpha_1| + 1) + 2r$$

edges connecting α_1 to $H' \setminus \alpha_1$, where r is the number of edges internal to α_1 that must be ommitted to satisfy (1). The simple lower bound on r, the number of edges needed for two graphs with at most r edges to be $\operatorname{dist}(\alpha_1, \alpha_2)$ -far, that follows from $\operatorname{dist}(\alpha_1, \alpha_2) \leq 2r/|\alpha_1|^2$ is sufficient. Combining this with (1) yields

$$r \ge 8(\varepsilon'/4 - \varepsilon)t^2 \,. \tag{2}$$

The number of edges connecting α_1 to $H' \setminus \alpha_1$ is therefore, by (2), at least

$$\alpha_1 | (t/3 - |\alpha_1| + 1) + 16(\varepsilon'/4 - \varepsilon)t^2 \ge 16(\varepsilon'/4 - \varepsilon)t^2.$$

All of these edges must be removed to move α_1 (resp. α_2), and so

$$\operatorname{dist}(G',M) \geq \frac{16(\varepsilon'/4 - \varepsilon)t^2}{(4t)^2} = \frac{\varepsilon'}{4} - \varepsilon$$

We have defined $\varepsilon \leq \varepsilon'/8$ and so dist $(G', M) \geq \varepsilon$, a contradiction.

The cases are exhausted and so $dist(G', P) \ge \varepsilon$ as desired.

4 Conclusion

Property testing is an application of induction (in the philosophy of science sense), in which we obtain a small, random sample of a structure and seek to determine whether the structure has a desired property or is far from having the property. We have considered the *classification problem* for testability, classifying the prefix vocabulary classes of first-order logic according to their testability. In particular, we have given a simplified version of the untestable property from Alon *et al.* [1] for the case of directed graphs which may contain loops. This implies that there exists an untestable property expressible with quantifier prefixes $\forall^4 \exists, \forall^3 \exists \forall, \forall^2 \exists \forall^2 \text{ and } \forall \exists \forall^3$. It would be worthwhile to determine the testability of the prefixes containing two or three universal quantifiers (for graphs or more general relational structures).

5 Appendix

We complete the proof of Lemma 2 following the outline by Alon *et al.* [1]. All graphs in this appendix are undirected, loop-free graphs on labelled vertices.

5.1 Proof of Lemma 2

Lemma 2 (Alon et al. [1]) There exists a constant $\varepsilon' > 0$ such that for every $D \in \mathbb{N}$, there exist two bipartite graphs H = H(D) and H' = H'(D) satisfying the following conditions.

- 1. Both H and H' have a bipartition into classes U_1 and U_2 , each of size t.
- 2. In both H and H', for all subgraphs X with size $t/3 \le \#(X) \le t$, there are more than $t^2/18$ undirected edges between X and the remaining part of the graph.
- 3. The minimum degree of both H and H' is at least t/3.
- 4. dist $(H, H') \ge \varepsilon'$.
- 5. For all D-element graphs T, $\operatorname{count}_H(T) = \operatorname{count}_{H'}(T)$.

Proof. We follow the proof outlined by Alon *et al.* [1] and begin with their proof of the following simple lemma.

Lemma 6 (Alon et al. [1]). There exist constants ε and N such that every graph H with n > N (labelled) vertices is ε -far from all but at most $2^{n^2/5}$ other graphs with the same vertex set.

Proof. Choose an $\varepsilon < 1/2$ such that $\left(\frac{e}{\varepsilon}\right)^{\varepsilon} < 2^{1/10}$ and an $N > \varepsilon^{-1}$ such that $n^n < 2^{n^2/10}$ for n > N. The number of graphs that are less than ε -far from a given H with n > N vertices is at most

$$n! \sum_{i=0}^{\varepsilon n^2} \binom{\binom{n}{2}}{i}.$$
(3)

We apply the identity $\binom{a}{b} = \binom{a-1}{b-1} + \binom{a-1}{b}$ inductively to $\binom{n^2}{\varepsilon n^2}$. A simple inductive proof shows that applying this identity once to each term, repeating for *a* levels, gives $\binom{n^2}{\varepsilon n^2} = \sum_{i=0}^{a} \binom{a}{i} \binom{n^2-a}{\varepsilon n^2-i} =: L(a)$, and so

$$\binom{n^2}{\varepsilon n^2} = L(n) = \sum_{i=0}^n \binom{n}{i} \binom{n^2 - n}{\varepsilon n^2 - i}.$$
(4)

Recalling that $\sum_{i=0}^{n} {n \choose i} = 2^n$, there are $2^n > \varepsilon n^2$ total "terms" in the summation. Each term in the summation $\sum_{i=0}^{\varepsilon n^2} {\binom{n}{2}}{i}$ can therefore be paired with a term from (4) that upper-bounds it. Combining with (3), we see that the number of graphs that are less than ε -far from H is less than

$$n! \binom{n^2}{\varepsilon n^2} < n^n \left(\frac{e}{\varepsilon}\right)^{\varepsilon n^2} < 2^{n^2/5},$$

as desired.

 $\Box \operatorname{Lemma}\,6$

Next, we show that most (sufficiently large) bipartite graphs satisfy Conditions 2 and 3 of Lemma 2. We use the following statement of Chernoff bounds (see Appendix A of Alon and Spencer [4]);

$$\Pr[X < a] \le \mathbb{E}[e^{-\lambda X}]e^{\lambda a}, \qquad (5)$$

where λ is chosen to optimize the bound, and also the following lemma.

Lemma 7 (Lemma A.1.5 in Alon and Spencer [4]).

$$\frac{e^{\lambda} + e^{-\lambda}}{2} = \cosh(\lambda) \le e^{\lambda^2/2} \,. \tag{6}$$

Lemma 8 (Alon et al. [1]). There exists an N' such that for n > N', at least $\frac{1}{2}2^{n^2}$ of the bipartite graphs with a given (labeled) bipartition U_1 , U_2 where $|U_1| = |U_2| = n$ satisfy both of the following conditions.

- (8.1) The minimum degree is at least n/3.
- (8.2) For every subset X of $U_1 \cup U_2$ with size $n/3 \le |X| \le n$, there are more than $n^2/18$ edges between X and $(U_1 \cup U_2) \setminus X$.

Proof. We let G be a random bipartite graph with a given, labeled bipartition U_1, U_2 chosen in the following way. Each possible edge $(u, v) \in U_1 \times U_2$ is placed independently and uniformly with probability 1/2. There are n^2 possible edges, and so each of the 2^{n^2} possible such bipartite graphs is generated with equal probability. The probability of G satisfying (8.1) and (8.2) above is (by definition)

$$\frac{|\{H \mid H \text{ is such a graph that satisfies (8.1) and (8.2)}\}|}{2^{n^2}}$$

We want a lower-bound on the number of such graphs, or equivalently a lower-bound on $\Pr[G \text{ satisfies } (8.1) \text{ and } (8.2)] \cdot 2^{n^2}$ that is greater than $\frac{1}{2}2^{n^2}$. It suffices therefore to show that this probability is at least 1/2. Using the union bound, $\Pr[G \text{ satisfies } (8.1) \text{ and } (8.2)] \geq$

 $1 - \Pr[G \text{ does not satisfy } (8.1)] - \Pr[G \text{ does not satisfy } (8.2)].$

We will show in Claims 1 and 2 that this is at least 1 - o(1) > 1/2, where the inequality holds for sufficiently large N'. We will let $U = U_1 \cup U_2$ be the set of all vertices.

Claim 1 $\Pr[G \text{ does not satisfy } (8.1)] = o(1).$

Proof. Let deg(v) be the degree of a vertex v. By the union bound,

$$\Pr[G \text{ does not satisfy } (8.1)] \le \sum_{v \in U} \Pr[\deg(v) \le n/3].$$

Let N_{uv} be an "indicator" variable for the event that there is an edge E(u, v) which is normalized to take the following values,

$$N_{uv} := \begin{cases} -1, & \text{if } \neg E(u, v); \\ 1, & \text{if } E(u, v). \end{cases}$$
(7)

Then, $\deg(v) \le n/3$ iff

$$Y_v := \sum_{\{u \mid u \in U_1 \text{ if } v \in U_2, u \in U_2 \text{ if } v \in U_1\}} N_{uv} \le -n/3$$

and so $\sum_{v \in U} \Pr[\deg(v) \le n/3] = \sum_{v \in U} \Pr[Y_v \le -n/3]$. We apply (5) and Lemma 7, and so

$$\Pr[Y_v \le -n/3] \le \mathbb{E}[e^{-\lambda Y_v}]e^{-\lambda n/3} = \cosh(\lambda)e^{-\lambda n/3} \le e^{\lambda^2 n/2 - \lambda n/3}.$$

Minimizing the bound by setting $\lambda = 1/3$ gives

$$\Pr[G \text{ does not satisfy } (8.1)] \le (2n)e^{-n/18} = o(1),$$

as desired.

Claim 2 $\Pr[G \text{ does not satisfy } (8.2)] = o(1).$

Proof. By the union bound,

 $\Pr[G \text{ does not satisfy } (8.2)] \le \sum_{\{X \mid X \subseteq U, n/3 \le |X| \le n\}} \Pr[G \text{ violates } (8.2) \text{ with } X].$ (8)

Let $a := |X \cap U_1|$, $b := |X \cap U_2|$, i := a + b = |X|. As in (7), we let N_{uv} be a normalized indicator for the event E(u, v). Let $Y_X := \sum_{\{u,v|u \in X, v \in U \setminus X\}} N_{uv}$. Then, G violates (8.2) with X iff $Y_X < -i(2n-i) + n^2/9$. Using again (5),

$$\sum_{\{X|X \subseteq U, n/3 \le |X| \le n\}} \Pr[G \text{ violates } (8.2) \text{ with } X] = \\ \sum_{\{X|X \subseteq U, n/3 \le |X| \le n\}} \Pr[Y_X < -i(2n-i) + n^2/9] \le \\ \sum_{\{X|X \subseteq U, n/3 \le |X| \le n\}} \operatorname{E}[e^{-\lambda Y_X}] e^{\lambda(-i(2n-i) + n^2/9)} = \\ \sum_{\{X|X \subseteq U, n/3 \le |X| \le n\}} \prod_{\{u, v|u \in X, v \in U \setminus X\}} \operatorname{E}[e^{-\lambda N_{uv}}] e^{\lambda(-i(2n-i) + n^2/9)}.$$
(9)

We can divide the product into four cases, $\prod_{\{u,v|u\in X, v\in U\setminus X\}} E[e^{-\lambda N_{uv}}] =$

$$\begin{pmatrix} \prod_{\{u,v|u\in X\cap U_1,v\in U_1\setminus X\}} e^{\lambda} \end{pmatrix} \begin{pmatrix} \prod_{\{u,v|u\in X\cap U_2,v\in U_2\setminus X\}} e^{\lambda} \end{pmatrix} \cdot \\ \begin{pmatrix} \prod_{\{u,v|u\in X\cap U_1,v\in U_2\setminus X\}} \frac{e^{\lambda}+e^{-\lambda}}{2} \end{pmatrix} \begin{pmatrix} \prod_{\{u,v|u\in X\cap U_2,v\in U_1\setminus X\}} \frac{e^{\lambda}+e^{-\lambda}}{2} \end{pmatrix} .$$

 \Box Claim 1

Recalling Lemma 7 and combining with (9), $\Pr[G \text{ does not satisfy } (8.2)] \leq$

$$\sum_{\{X \subseteq U \mid n/3 \le |X| \le n\}} e^{\lambda(a(n-a)+b(n-b)) + \frac{\lambda^2}{2}(a(n-b)+b(n-a)) + \lambda\left(-i(2n-i) + \frac{n^2}{9}\right)}.$$
 (10)

There are at most $\binom{n}{a}\binom{n}{i-a}$ choices of X with size *i* when $a = |X \cap U_1|$ and $b = i - a = |X \cap U_2|$, and so after simplifying, (10) is at most

$$\sum_{i=\lceil n/3\rceil}^{n} \sum_{a=0}^{i} \binom{n}{a} \binom{n}{i-a} e^{\lambda \left(2ai+n^2/9-2a^2-in\right)+\frac{\lambda^2}{2}\left(2a^2+in-2ai\right)}.$$
 (11)

Using the simple bound $\binom{n}{k} \leq \left(\frac{en}{k}\right)^k$, we get that (11) is at most

$$\sum_{i=\lceil n/3\rceil}^{n} \sum_{a=0}^{i} e^{i+a\ln(n/a)+(i-a)\ln(n/(i-a))+\lambda\left(2ai+n^{2}/9-2a^{2}-in\right)+\frac{\lambda^{2}}{2}\left(2a^{2}+in-2ai\right)}.$$
(12)

Let us consider $2ai + n^2/9 - 2a^2 - in$. If $a \ge 5n/6$, then

$$\begin{aligned} 2ai + \frac{n^2}{9} - 2a^2 - in &\leq 2in + \frac{n^2}{9} - \frac{25}{18}n^2 - in \\ &\leq -\frac{5}{18}n^2 = -\Theta(n^2) \,. \end{aligned}$$

If a < 5n/6, then the maximum of $2ai + n^2/9 - 2a^2 - in$ occurs at a = i/2. Therefore,

$$\begin{split} 2ai + \frac{n^2}{9} - 2a^2 - in &\leq i^2 + \frac{n^2}{9} - \frac{i^2}{2} - in = \frac{i^2}{2} + \frac{n^2}{9} - in \\ &\leq \frac{n^2}{18} + \frac{n^2}{9} - \frac{n^2}{3} = -\frac{n^2}{6} = -\Theta(n^2) \,, \end{split}$$

because the maximum occurs at the boundary i = n/3. Applying these bounds, (12) is at most

$$\sum_{i=\lceil n/3\rceil}^{n} \sum_{a=0}^{i} e^{i+a\ln(n/a)+(i-a)\ln(n/(i-a))+\lambda\left(-n^2/6\right)+\frac{\lambda^2}{2}\left(2a^2+in-2ai\right)}.$$
 (13)

Choosing the non-optimal $\lambda = 1/\sqrt{n}$ and looking only at asymptotics, we see from (13) that $\Pr[G \text{ does not satisfy } (8.2)] \leq$

$$\sum_{i=\lceil n/3\rceil}^{n} \sum_{a=0}^{i} e^{O(n) + O(n \ln n) - \Theta\left(n^{3/2}\right) + O(n)} = O(n^2) e^{-\Theta\left(n^{3/2}\right)} = o(1) \,.$$

 $\Box\operatorname{Claim}\,2$

The two claims combine to give the lemma.

We are now ready to complete the proof of Lemma 2. We let ε' be the ε of Lemma 6, and choose a sufficiently large $s = 2n > \max(N, 2N')$ where N and N' are from Lemmas 6 and 8 respectively. There are at most $E := 2^{\binom{D}{2}}$ graphs on D vertices and each appears at most s^D times as an induced subgraph in a graph on s vertices. An "appearance count" for a graph is an $2^{\binom{D}{2}}$ -tuple giving, for each of the possible graphs on D vertices, the number of appearances as an induced subgraph. There are therefore at most $(s^D)^E = 2^{DE \log s}$ many distinct appearance counts (tuples). By Lemma 8, there are at least $\frac{1}{2}2^{n^2}$ bipartite graphs satisfying the conditions of that lemma, and

$$\frac{1}{2}2^{n^2} = 2^{s^2/4 - 1} = 2^{s^2/20 - 1}2^{s^2/5} > 2^{DE\log s}2^{s^2/5},$$

where the inequality holds for sufficiently large s.

There are at most $2^{DE \log s}$ distinct appearance counts and so there must be some appearance count shared by *more* than $2^{s^2/5}$ of the above graphs. By Lemma 6, there must be two such graphs (satisfying the conditions of Lemma 8 and with the same appearance count) that are ε -far from each other. \Box Lemma 2

References

- Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of large graphs. *Combinatorica*, 20(4):451–476, 2000.
- [2] Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties testable with one-sided error. *SIAM J. Comput.*, 37(6):1703–1727, 2008.
- [3] Noga Alon and Asaf Shapira. A separation theorem in property testing. Combinatorica, 28(3):261–281, 2008.
- [4] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, third edition, 2008.
- [5] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to numerical problems. J. of Comput. Syst. Sci., 47(3):549–595, 1993.
- [6] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Springer-Verlag, 1997.
- [7] Reinhard Diestel. Graph Theory. Springer, third edition, 2006.
- [8] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, second edition, 2000.
- [9] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and approximation. J. ACM, 45(4):653-750, 1998.
- [10] Charles Jordan and Thomas Zeugmann. Relational properties expressible with one universal quantifier are testable. In Osamu Watanabe and Thomas Zeugmann, editors, Stochastic Algorithms: Foundations and Applications, 5th International Symposium, SAGA 2009, Sapporo, Japan, October 2009, Proceedings, volume 5793 of Lecture Notes in Computer Science, pages 141 – 155. Springer, 2009.
- [11] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.

□Lemma 8