Indistinguishability and First-Order Logic

Skip Jordan and Thomas Zeugmann

Division of Computer Science
Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan
{skip,thomas}@ist.hokudai.ac. jp

Abstract. The “richness” of properties that are indistinguishable from
first-order properties is investigated. Indistinguishability is a concept of
equivalence among properties of combinatorial structures that is appro-
priate in the context of testability. All formulas in a restricted class of
second-order logic are shown to be indistinguishable from first-order for-
mulas. Arbitrarily hard properties, including RE-complete properties,
that are indistinguishable from first-order formulas are shown to exist.
Implications on the search for a logical characterization of the testable
properties are discussed.

Key words: property testing, logic, graph theory, descriptive complexity

1 Introduction

In property testing we are interested in efficiently deciding whether a given struc-
ture possesses, or is far from possessing, a desired property. Although algorithmic
efficiency is often defined as polynomial time, this is not always ideal. For exam-
ple, we may not have an explicit representation of the input but instead only the
ability to query an oracle for individual bits. These queries may be expensive
and even a linear-time algorithm, which requires us to compute the entire input
explicitly, may be unacceptable. If we are only concerned about distinguishing
with high probability between the input satisfying and being far from satisfying
a property, a sub-linear number of queries may be sufficient.

Testers are randomized algorithms that, given the size of the input, are
restricted to a certain number of queries which does not depend on the input size.
We shall give formal definitions below, but mention here that such algorithms
are probabilistic approximation algorithms.

In a certain sense, the whole area can be traced back to Freivalds [14] who
introduced a program result checker for matrix multiplication over a finite field.
Subsequently, the study of property testing originally arose in the context of
program verification (see Blum et al. [7] and Rubinfeld and Sudan [22]), and the
first explicit definition appears to be in [22]. For surveys of the field see e.g.,
Fischer [12] and Ron [21].

Characterizing the testable properties has been called the most important
problem in the area (see Alon and Shapira [5]). The class of regular languages
was shown to be testable in Alon et al. [4], a result that was extended in Chock-
ler and Kupferman [8]. However, there are context-free languages that are not

2 Skip Jordan and Thomas Zeugmann

testable [12]. It is then perhaps at first surprising that there are many natural,
testable properties that are considerably harder. Testers for NP-complete graph
properties including k-color were given in Goldreich et al. [16].

Restricting ourselves to characterizations of testable graph properties, the
first step towards a logical characterization was obtained by Alon et al. [2], later
extended by Fischer [13]. They show that all properties expressible in first-order
logic (FO) with all quantifier alternations of type “3V” are testable, whereas
there exists a property expressible with a single quantifier alternation of type
“y3” that is not testable. It is useful to note the equivalence of first-order logic
with arithmetic and uniform AC® (see Barrington et al. [6]). Later, a character-
ization of the graph properties testable with one-sided error by algorithms that
are unaware of the input size was given in [5], a result that was extended to
hypergraphs by R6dl and Schacht [20]. An exact combinatorial characterization
of the graph properties testable with a constant number of queries has been
obtained by Alon et al. [3].

In the present paper we focus on a question raised in [13]: the expressive
power of first-order logic in the context of indistinguishability and testing. The
concept of indistinguishability was introduced by Alon et al. [2] as a suitable
form of equivalence in the context of testing. First-order logic with arithmetic
is equivalent to uniform ACP?, and so it is strictly contained in NP (see Furst et
al. [15]). Therefore, properties that are complete for NP under first-order reduc-
tions such as k-color cannot be expressed in FO (see Allender et al. [1]). However,
it has been noted in Alon et al. [2] that there are first-order expressible prop-
erties that are indistinguishable from such properties, including k-color. In this
sense, the descriptive power of first-order logic with indistinguishability is sur-
prisingly rich. We examine the set of properties that are indistinguishable from
FO-expressible properties and show that this set is larger than was previously
known.

The paper is organized as follows. We begin by giving more formal defini-
tions. In Section 3 we show that all graph properties expressible in a restriction
of monadic second-order existential logic (MSO3) are indistinguishable from FO
properties. We next prove that there are arbitrarily-hard properties, including
RE-complete properties, that are indistinguishable from FO properties (cf. Sec-
tion 4). In fact, we can construct arbitrarily-hard testable properties. Finally, we
discuss the implications of the results obtained (cf. Section 5).

2 Preliminaries

We generally restrict our attention to graph properties, and so give the following
definitions for graphs. We consider only finite, undirected graphs without loops.
We use G and H to refer to graphs, n = |G| as the number of vertices in a graph,
and P, @ and R to refer to properties.

Let G and G’ be two graphs having the same vertex set and let € > 0. If
G’ can be constructed from G by adding and removing no more than en? edges
then we say that G and G’ differ in no more than en? places.

Indistinguishability and First-Order Logic 3

Definition 1 (Alon et al. [2]). Let P be a property of graphs and let € > 0.

(1) A graph G with n vertices is called e-far from satisfying P if no graph G’
with the same vertex set, which differs from G in no more than en? places,
satisfies P.

(2) An e-test for P is a randomized algorithm which, given the quantity n and
the ability to make queries whether or not a desired pair of vertices of an
input graph G with n vertices are adjacent, distinguishes with probability at
least % between the case of G satisfying P and the case of G being e-far from
satisfying P.

Note that in Definition 1 the choice of % is of course traditional and arbitrary.
Any probability strictly greater than % can be chosen and the resulting test can
be iterated a constant number of times to achieve any desired accuracy strictly

less than one, see e.g., Hromkovi¢ [19].

Definition 2 (Alon et al. [2]). The property P is called testable if for every
fized € > 0 there exists an e-test for P whose total number of queries is bounded
only by a function of €, which is independent of the size of the input graph.

We allow the tester to know the size of the input, and to make its queries
in any computable fashion. In [17] this was shown to be equivalent to the “non-
adaptive” model, where a tester uniformly chooses a set of vertices, receives the
induced subgraph, and makes a decision based on whether that subgraph has
some fixed property. We note that this definition of testability is not an o(n)
number of queries and that “e-far” clearly depends on n.

In general we do not require a uniformity condition. However, it is very
natural to require the e-tests for P in the above definition to be computable
given €. We refer to properties satisfying this additional condition as uniformly
testable where the uniform and non-uniform cases differ (Proposition 1).

We note that testers given in the literature are generally presented as a single
algorithm that takes € as a parameter and therefore uniform.

Definition 3 (Alon et al. [2]). Two graph properties P and Q are called in-
distinguishable if for every e > 0 there exists N = N(e) satisfying the following.
For every graph G having n > N wertices that satisfies P there exists a graph
G' with the same vertex set, differing from G in no more than en? places, which
satisfies Q; and for every graph H with n > N vertices satisfying Q there exists a
graph H' with the same vertex set, differing from H in no more than en? places,
which satisfies P.

As notation, we use ¢, ¥ and to refer to logical formulas. Whether these
formulas are first- or second-order will be clear from context. We use ® to denote
a logical interpretation of variables. First-order variables are denoted by z;, v;
and t; while second-order variables are denoted by C;. Members of the universe
(nodes in the graph) are referred to as u; when we wish to distinguish between
variables and the nodes bound to them. We write E(x,y) to denote the predicate
“there is an edge between = and y.” Since we consider only finite, undirected

4 Skip Jordan and Thomas Zeugmann

graphs without loops, it follows that E(z,y) implies E(y, z) for all z, y and that
E(x,z) is false for all .

Logical structures such as graphs allow us to interpret predicate symbols.
The combination of structures and interpretations, e.g., (G, ®), then allows us
to interpret formulas. We write G = ¢, read G models ¢, if formula ¢ holds when
interpreting the edge predicate according to G. Inductively we use interpretations
to interpret bound variables, and write (G,®P) | ¢ if formula ¢ holds when
interpreting bound variables according to @ and the edge predicate (assuming
it isn’t bound by a second-order quantifier) according to G. For a more formal
introduction to the logics used, see e.g., Enderton [9].

We assume that ordering and arithmetic are not present in the logics consid-
ered, however ordering and arithmetic can be defined in logics containing exis-
tential second-order. In proofs we treat the universal quantifier (V) as the dual of
the existential quantifier (3). Although properties are often implicitly assumed
to be computable, we shall see that there are implications to this assumption,
and so explicitly state that we do not make this assumption.

Finally, we define DTIME(f(n)) in the usual manner as the set of decision
problems computable on a deterministic Turing machine in f(n) steps.

3 Monadic Second-Order Existential Logic

In this section we show that all graph properties expressible in a restriction of
monadic second-order existential logic (see Definition 4 below) are indistinguish-
able from FO properties.

Definition 4. Let rMSO3 denote the graph properties expressible in monadic
second-order existential logic that satisfy the following. For all P €erMSO3 ex-
pressible with r second-order quantifiers, there exists an N such that in all graphs
G satisfying P with n > N wvertices

(1) there exists a set of r vertices such that removing them does not affect P,
and
(2) adding r disconnected vertices to the graph does not affect P.

Note that rMSO3 contains natural problems such as k-color. The first re-
striction is similar to but weaker than hereditariness. The proof of the following
theorem is a generalization of a result regarding the indistinguishability of k-
color from FO properties (see, e.g., Alon et al. [2]).

Theorem 1. All properties expressible in rMSO3 are indistinguishable from
properties expressible in FO.

Proof. Let P be the rMSOd property expressed by formula ¢ := 3C1Cs . .. C1),
where 1) is first-order. We construct a first-order formula ¢’ expressing property
Q@ such that P and @ are indistinguishable.

¢ =ity ...t

Indistinguishability and First-Order Logic 5

where the symbols ¢; do not occur in ¢ (if they do occur, simply rename them).
Formula v’ is derived from v with the following changes:

1. Replace all occurrences of C;(x) with E(¢;, x).

2. Replace all quantifiers with restricted quantifiers:
Jr:ywith3Iz: (x £t A...ANx#t.) Ay and
Ve :ywithVe: (z AL A... Az #£t,) — 7.

First, let € > 0 be arbitrary and let G model ¢. Assume |G| = n > N. Choose
the set of r vertices guaranteed to exist by Restriction (1) of Definition 4, call
them u; ... u, and remove them. Call this graph G~. Take an interpretation @
under which G~ models ¢. Replace the u; as disconnected vertices. Connect u;
and z iff C;(z) holds in @. Call the resulting graph G’. Note that we have changed
at most r(n — 1) edges, which is less than en? for sufficiently large n.

Claim 1. Graph G’ models ¢'.

Proof. We construct a satisfying interpretation ¢’ from &. The only change
is to bind t; to u;. Recall that the ¢; appear only where we added them above
and thus the u; are only referred to in these contexts.

Note that:

—(GT P Fr=y = (G?)Fz=y,
because the u; cannot appear here and all other members are retained.
- (G7,9) ECi(z) = (G',9') E E(t;,x), by construction.
— Logical operators A, — are preserved inductively.
- (GO ETr:y = (G,P)VE=Tr:(z#t1 AN...NTx#t,) A7,
because G~ does not contain the vertices referred to by the ;.

Therefore, G’ models ¢’ and thus has the first-order property Q. OClaim 1

Next, let € > 0 be arbitrary and assume that graph H models ¢’. Assume
further that |H| > N. Let ¢’ be an interpretation satisfying ¢’. Let the vertices
bound to the ¢; be called u;. Recall that because of the restricted quantifiers
in ¢, the u; are referred to only as t;, and the ¢; only occur where we explicitly
added them.

Remove the u; from H and call this graph H~. Next, re-add the u; as r
isolated vertices and call this graph H'. We claim that both H~ and H’ model
¢, and construct a satisfying interpretation @ from ¢’. Because of Restriction (2)
in Definition 4, it is sufficient to prove that H~ models ¢ as adding r isolated
vertices will not affect property P.

We set C;(x) to be true in @ iff there is an edge between w; and z in H.

Claim 2. (H™,9®) = ¢.

Proof. Note that:
- (H ,P)Frx=y < (H,?)Fz=y,

because x and y cannot be bound to u; on the right.
- (H,9) = Ci(z) < (H,9') = E(t;,x), by construction.
— Logical operators A, — are preserved inductively.

6 Skip Jordan and Thomas Zeugmann

- (H ,9)FTr:y = HI)ETz:(z#tN... N #t) N7,
because H~ does not contain the vertices referred to by the t;.

O Claim 2

Therefore, H~ has property P and by Restriction (2) of Definition 4, H'

does too. We have changed at most 7(n — 1) edges, which is less than en? for
sufficiently large n.

Properties P and @ are therefore indistinguishable. a

4 Hard Properties

In the previous section, we showed that every property expressible in a restric-
tion of monadic second-order existential logic is indistinguishable from some
FO-expressible property. All properties expressible in this logic are contained
in NP by Fagin’s [10] theorem. For graphs it is known that MSO3 is strictly less
expressive than SO3: there are graph properties in NP that are not expressible
in MSO3 (see, Fagin et al. [11]). In this section we continue our study of the set
of properties indistinguishable from FO-expressible properties, and show that it
contains much harder properties. We show that this set contains uncomputable
properties, and also, for every f(n), computable (and testable) properties that
are not computable in time f(n). In this sense, the power of first-order logic in
the context of indistinguishability is even larger than previously known. How-
ever, we also show that there exist computable properties that are distinguishable
from every first-order expressible property.

In the next proof we use the concept of RE-completeness. A decision problem
is in RE (recursively enumerable) iff there exists a Turing machine that halts
and accepts all positive instances and does not accept negative instances. The
machine is not required to halt on negative instances. A decision problem D
is RE-complete iff it is in RE and all other problems in RE can be decided
by machines given an oracle for D. The halting problem is the canonical RE-
complete problem.

Theorem 2. There exists an RE-complete graph property that is indistinguish-
able from a FO-expressible property.

Proof. We define property P such that graph G satisfies it iff

(1) there is a vertex ¢ such that all edges are incident to i, and

(2) taking the degree d of vertex i as the number of a Turing machine My in
some canonical enumeration (M;);cn of Turing machines where every Turing
machine appears at least once, provided M, halts on the empty string.

If My does not halt on the empty string, then graph G does not have prop-
erty P. For convenience, we require that machine My in the enumeration halts
on the empty string. We shall show that P is an RE-complete property that is
indistinguishable from the FO-expressible property of being an empty graph.

Indistinguishability and First-Order Logic 7

Lemma 1. P is RE-complete.

Proof. Let HALT={a | M, halts on the empty string}. We show that P is
RE-complete by reducing HALT to it. On input a, representing Turing machine
M, in the enumeration, we output a graph on a + 1 vertices. There is an edge
between vertices 7 and j iff exactly one of them is zero. All edges are then incident
to the zero vertex, and as the degree of vertex zero is n — 1 = a, the graph has
property P iff machine M, halts on the empty string. O Lemma 1

Lemma 2. P is indistinguishable from the FO property of being an empty graph
(Va,y: ~E(z,y)).

Proof. Assume graph G satisfies property P and let ¢ > 0 be arbitrary. Let
i denote the vertex that is mentioned in Property (1) of the Theorem, and let d
be its degree. Remove the d < n—1 edges incident to ¢. By assumption, all edges
in G were incident to i, and so the resulting graph is empty. For n sufficiently
large, n — 1 < en?.

Now assume graph G is an empty graph. By assumption, M, halts. Choose
an arbitrary vertex ¢ and note that all zero edges are incident to it. Consequently,
G has property P. We have not changed any edges, and therefore 0 < en? for
all non-zero n. 0O Lemma 2

Lemma 1 and 2 directly yield the theorem. a

The following proposition is essentially obvious: an e-tester is a probabilistic
machine. It remains only to mention that we can, by choosing € > 0 appropriately
as a function of n, remove the “approximation” in “probabilistic approximation
algorithm.” Of course, we then make a number of queries that depends on the
input size.

It is important to note that this proposition does not hold in the non-uniform
case.

Proposition 1. All uniformly testable graph properties can be decided by a prob-
abilistic Turing machine with success probability at least %

Proof. Assume graph property P is testable. We construct a probabilistic ma-
chine deciding P. On input G of size n, choose ¢ such that en? < 1, for example,
€= n%ﬂ Run the e-test on G and output the result. Because en? < 1, being
at most e-far from G implies that we may not change any edges. We therefore
distinguish with probability at least % between the case of G satisfying P and

G not satisfying P. a

Corollary 1. All uniformly testable properties are decidable by probabilistic ma-
chines.

Proof. Simply modify en? in the proof to the appropriate definition of e-far for
the vocabulary in question. a

The following also follows immediately, as randomization does not allow us to
compute uncomputable functions. We provide a proof sketch for completeness.

8 Skip Jordan and Thomas Zeugmann

Corollary 2. All uniformly testable properties are recursive.

Proof. We convert the probabilistic machine into a deterministic machine using
the following generic construction.

All probabilistic machines can be modified such that their randomness is
taken from a special binary “random tape” that is randomly fixed when the
machine is started, in which each digit is 0 or 1 with equal probability.

All halting probabilistic machines must eventually halt, regardless of the ran-
dom choices made. We can then simulate the machine over all initial segments of
increasing lengths, keeping track of “accepting,” “rejecting” and “still running”
states. Once any given segment has halted, all random strings beginning with
that initial segment must also halt. Therefore, the percentage of halting paths is
increasing, and we shall eventually reach a length such that at least 70% of the
paths have halted. Our error probability is at most %, strictly less than half of
70% and so we can output the decision of the majority of the halting paths. O

Theorem 3 (Alon et al. [2]). Every first-order property P of the form

Fr, e, VY1, Ys AT, T YTy Ys)s
where A is quantifier-free, is testable.

Note that our RE-complete property P defined in the proof to Theorem 2,
is indistinguishable from a first-order property of this form (¢ = 0).

Theorem 4 (Alon et al. [2]). If P and Q are indistinguishable graph proper-
ties, then P is testable if and only if Q is testable.

However, we now see a contradiction in the uniform case. Our RE-complete
property P, defined in the proof to Theorem 2, is indistinguishable from a FO-
property that, according to Theorem 3, is testable (which it is). Theorem 4 then
implies that this RE-complete property P is also testable, which contradicts
Corollary 2. Therefore, Theorem 4 is not strictly correct in the uniform case.
The proof given in [2] assumes that if input G has strictly less than N = N(e)
vertices, there exists a decision procedure that gives “accurate output according
to whether it satisfies” the property in question. Of course, no such (uniform)
procedure exists for RE-complete properties. Theorem 4 holds in the uniform
case when restricted to recursive properties.

We can however use a similar construction to Theorem 2 to obtain the follow-
ing, restricting ourselves to recursive properties. By the time hierarchy theorem,
for every computable f(n) there exist computable properties that cannot be
decided in time f(n), see Hartmanis and Stearns [18].

We define arbitrarily-hard properties to be any set of computable properties
that “for each computable f(n), contains properties that cannot be computed
in DTIME(f(n)).”

It is of course possible to use other complexity measures. We have restricted
these sets to computable properties and so they are obviously infinite.

Indistinguishability and First-Order Logic 9

The reduction in the following proof increases the input length by an expo-
nential factor. However, because we are interested in arbitrarily-hard properties
and by the time hierarchy theorem, we can choose @) such that it is not com-
putable in, e.g., DTIME(Qf(”)). Then, after the input length is increased expo-
nentially, we have a property that cannot be computed in DTIME(f(n)). This
can be done for all f(n).

Theorem 5. There are arbitrarily-hard testable properties.

Proof. Let @Q be an arbitrarily-hard property. We define property R such that
@ is reducible to R. Let g(x) be the characteristic function for ¢ with an ap-
propriate encoding of the input. Similar to Theorem 2, we define R to hold in
graph G of size n iff

1. there is a vertex ¢ such that all edges are incident to i,
2. and either the degree of i is zero or ¢(n) = 1.

We can obviously reduce @ to R by computing the encoding x, and outputting
a graph on x vertices with one edge. We can therefore construct arbitrarily hard
properties R.

Using the same proof as that used for Theorem 2, we see that all such R are
also indistinguishable from the empty graph. The property of being the empty
graph is testable by Theorem 3, and so R is testable by Theorem 4, if it is
decidable. We can therefore construct arbitrarily hard, testable properties. O

Computable graph properties that are distinguishable from all first-order
properties do exist however. We show the following by a simple diagonalization
argument. We define distinguishable as “not indistinguishable.”

Theorem 6. There exist computable graph properties that are distinguishable
from all first-order properties.

Proof. We let first-order formula ¢; denote the i’th formula in some enumeration
of first-order formulas on graphs, in which all such formulas occur infinitely often.
We define property @ such that G has property @ iff ¢ does not hold on any
graph with |G| = n vertices.

We show that @ is distinguishable from all first-order properties by contra-
diction. Assume that first-order 1) expresses a property that is indistinguishable
from @. Find the first ¢ > N such that ¥ = ¢;. There are two cases. First,
assume that there is a graph G on 7 vertices such that G satisfies ¥. Then, there
is no graph on ¢ vertices with property @, by construction. We therefore cannot
obtain a graph G’ on i vertices with property @ by changing at most en? edges
in G, because no such graph exists.

There must then be no such graph G on i vertices satisfying . In this case,
by definition all graphs on ¢ vertices have property). Taking any of them, we see
that we cannot obtain a graph on ¢ vertices satisfying v by modifying at most
en? edges, because again no such graph exists. There must then be no first-order
1) expressing a property indistinguishable from Q. a

10 Skip Jordan and Thomas Zeugmann
5 Discussion

The descriptive power of first-order logic with indistinguishability is surprisingly
large. As we have seen, we can construct testable properties of arbitrary hardness.
However, as seen in [2], there are problems in FO with quantifier alternations
“v3” that are not testable. So, although the class of testable properties contains
arbitrarily hard properties, it does not strictly contain uniform AC? or even the
context-free languages. In this sense, it is a rather odd class.

A complete, logical characterization of the testable properties must then not
contain FO entirely, but must contain arbitrarily hard properties. However, in
the uniform case we have seen that all testable properties are recursive, and so a
characterization of the uniformly testable properties must not be able to express
e.g. RE-complete properties.

We also believe that the distinction between the uniformly testable and non-
uniformly testable properties is important. In particular, given our motivation
of searching for a class that is very efficiently computable, it seems undesirable
to admit uncomputable properties. In this sense, the uniform case is preferable
(Proposition 1). It would also be worthwhile to consider other possible definitions
of uniformity.

Acknowledgements. We wish to thank Osamu Watanabe for an inspiring
discussion regarding the importance of uniformity conditions.

References

[1] Eric Allender, José L. Balcézar, and Neil Immerman. A first-order isomorphism
theorem. SIAM J. Comput., 26(2):539-556, 1997.

[2] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient
testing of large graphs. Combinatorica, 20(4):451-476, 2000.

[3] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial
characterization of the testable graph properties: It’s all about regularity. In STOC
’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
pages 251-260, New York, NY, USA, 2006. ACM.

[4] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular
languages are testable with a constant number of queries. SIAM J. Comput.,
30(6):1842-1862, 2001.

[5] Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties
testable with one-sided error. In Proceedings, 46th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2005, pages 429-438, Washington, DC,
USA, 2005. IEEE Computer Society.

[6] David A. Mix Barrington, Neil Inmerman, and Howard Straubing. On uniformity
within NC1. J. of Comput. Syst. Sci., 41(3):274-306, 1990.

[7] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. J. of Comput. Syst. Sci., 47(3):549-595, 1993.

[8] Hana Chockler and Orna Kupferman. w-regular languages are testable with a
constant number of queries. Theoret. Comput. Sci., 329(1-3):71-92, 2004.

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

Indistinguishability and First-Order Logic 11

Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press,
second edition, 2000.

Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable
sets. In R.M. Karp, editor, Complezity of Computation, SIAM-AMS Proceedings,
volume VII, pages 43 — 73. Amer. Mathematical Soc., 1974.

Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. On monadic NP vs.
monadic co-NP. Inform. Comput., 120(1):78-92, 1995.

Eldar Fischer. The art of uninformed decisions. Bulletin of the European Associ-
ation for Theoretical Computer Science, 75:97, October 2001. Columns: Compu-
tational Complexity.

Eldar Fischer. Testing graphs for colorability properties. Random Struct. Algo-
rithms, 26(3):289-309, 2005.

Rusins Freivalds. Fast probabilistic algorithms. In Mathematical Foundations of
Computer Science 1979, Proceedings, 8th Symposium, Olomouc, Czechoslovakia,
September 3-7, 1979, volume 74 of Lecture Notes in Computer Science, pages
57-69. Springer-Verlag, 1979.

Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13-27, 1984.
Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its con-
nection to learning and approximation. J. ACM, 45(4):653-750, 1998.

Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph
properties. Random Struct. Algorithms, 23(1):23-57, 2003.

J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117:285-306, 1965.

Juraj Hromkovi¢c. Design and Analysis of Randomized Algorithms: Introduction
to Design Paradigms. Springer, 2005.

Vojtéch R6dl and Mathias Schacht. Property testing in hypergraphs and the
removal lemma. In STOC ’07: Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, pages 488-495, New York, NY, USA, 2007. ACM.
Dana Ron. Property testing. In Sanguthevar Rajasekaran, Panos M. Pardalos,
John H. Reif, and José Rolim, editors, Handbook of Randomized Computing, vol-
ume II, chapter 15, pages 597-649. Kluwer Academic Publishers, 2001.

Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
with applications to program testing. SIAM J. Comput., 25(2):252-271, 1996.

