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Abstract. Inspired by recent work on parallel SAT solving, we present
a lightweight approach for solving quantified Boolean formulas (QBFs)
in parallel. In particular, our approach uses a sequential state-of-the-art
QBF solver to evaluate subformulas in working processes. It abstains
from globally exchanging information between the workers, but keeps
learnt information only locally. To this end, we equipped the state-of-
the-art QBF solver DepQBF with assumption-based reasoning and inte-
grated it in our novel solver MPIDepQBF as backend solver. Extensive
experiments on standard computers as well as on the supercomputer
Tsubame show the impact of our approach.

1 Introduction

Recently, there has been much progress in solvers for quantified Boolean for-
mulas (QBF) [4, 7]. The quest for QBF solvers is motivated by the vision that
QBF solvers become powerful general purpose reasoning engines for PSPACE
problems in the same way as SAT solvers are for problems in NP. Then, many in-
teresting application problems that have compact QBF encodings but (assuming
NP 6= PSPACE) no compact SAT encodings could be handled by QBF solvers [1].

Most of the recent advances in QBF solving are realized within sequential
systems (e.g., [8, 10, 11, 14]), thus not taking advantage of the parallel comput-
ing resources provided by modern computer architectures. Although some ded-
icated parallel QBF solver implementations have been presented [6, 12, 13, 18],
to the best of our knowledge none is actively maintained and publicly available.
Additionally, the usual focus on sharing information between different work-
ing processes can be influential to the solver’s overall performance [17] due to
restrictions of bandwidth.

In this paper, we propose solving QBFs without global information sharing
and present MPIDepQBF5, a parallel solver for quantified Boolean formulas based
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on a new version of the sequential solver DepQBF. The rest of the paper is
organized as follows. First, we review related work in Section 2. Then we describe
the basic algorithm of our approach in Section 3. In Section 4, we evaluate the
performance of our solver on standard benchmark instances using Tsubame2.56.
In Section 5 we conclude with an outlook to future work.

2 Related Work

In the year 2000, work on parallel QBF solvers began with PQSolve, a paral-
lel version of QSolve [6], which implements techniques like quantifier inversion
or trivial truth. However, much progress has since been made in QBF solv-
ing, in particular clause and cube sharing have been introduced. More recently,
PAQuBE [13], QMiraXT [12], and the approach of Da Mota et al. [18] have been
presented. However, to the best of our knowledge, none of these tools is publicly
available and all seem to be no longer developed.

QMiraXT uses a shared memory architecture for sharing clauses which in-
creases flexibility, but has scalability issues. Da Mota et al. split non-prenex
non-CNF formulas into QBFs with free variables which are rewritten to propo-
sitional formulas by the workers. The master collects these propositional formulas
from which the final result is obtained. PAQuBE was developed as a parallel ver-
sion of QuBE and supports sharing learnt information between workers. It is the
solver most closely related to our approach. However, our solver uses a different
approach to generate subproblems. For quantified constraint satisfaction prob-
lems (QCSP), a problem-partition approach has been presented by Vautard [20]
et al. where parallism seems to be very beneficial. Inspired by the recent success
of Treengeling [2] in SAT, we allow each worker short (but increasing) timeouts
to solve particular subproblems. If a worker solves its subproblem, the result is
combined with previous results to determine what portion of the search tree is
completed. Otherwise, we either set more variables and distribute the resulting
problems or allow the worker to continue with a longer timeout (depending on
the number of free workers, subproblems not yet assigned to workers and param-
eters). Each worker retains information learnt from its previous subproblems.

3 The Architecture of MPIDepQBF

MPIDepQBF is a QBF solver that accepts input in the standard qdimacs for-
mat, i.e., QBFs ψ = Q1B1Q2B2 . . . QnBn.φ in prenex conjunctive normal form
(PCNF), where the formula φ is a conjunction of clauses. The quantifier prefix
Q1B1Q2B2 . . . QnBn is a sequence of quantified blocks Bi of variables where
Qi ∈ {∀,∃} and adjacent blocks are quantified differently, i.e. Qi 6= Qi+1.

MPIDepQBF has one master process to coordinate arbitrarily many worker
processes via MPI. The workers use the sequential QBF solver DepQBF [14],
which we extended to allow solving under assumptions. No other modifications
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were necessary. The workers obtain the input formula only once, at the start.
This is the only information shared, otherwise they are completely agnostic of
the global solving process. When a worker process is idle, the master process
supplies it with assumptions and a timeout. Then, the worker process tries to
solve the formula under these assumptions. The result is communicated to the
master process which adapts the time limit or selects another set of assumptions,
as described below. If the final value of the formula has been determined, the
worker processes are stopped. Details on master and worker processes follow.

3.1 Master Process

The master process generates a stream of subproblems, represented by partial
variable assignments and timeouts, and distributes them to the worker processes.
First, starting from the formula Q1B1Q2B2 . . . QnBn.φ, we sort each Bi accord-
ing to the number of occurrences of each variable in φ and concatenate these
sorted lists. This determines the order in which variables will be set.

Next we build a search tree. The tree has 3 kinds of leaves: sat, unsat, and
open, where each open leaf contains a variable assignment and a timeout. We
start with a fully-balanced binary tree that has only open leaves with the starting
timeout (by default 0.1s). The number of leaves is initially the highest power of
2 smaller than the number of available MPI worker processes times a busy-factor
(we use 1.25 by default). Each open leaf contains an assignment of the variables:
We assign the variables one-by-one in the order determined in the first step. For
each open leaf, we send the subproblem (determined by the timeout and the
assignment) to a free worker process.

When a worker returns a result, the master process merges it with the current
search tree. If the result is sat or unsat, then the open leaf gets replaced by the
result, and the tree is simplified as shown in Procedure simplify. If the result is a
timeout, then what happens depends on how many free MPI worker processes are
available. If the MPI queue is full (except for the one process that just returned),
then we multiply the timeout by a timeout-factor (1.4 by default) and send the
same case back to the worker process with the new, longer timeout. If there
are fewer open leaves than the number of MPI worker processes times the busy-
factor, then we replace the open leaf by, again, a fully-balanced binary sub-tree
with assignments that prolong the previous one. This is repeated until the whole
search tree is simplified to sat or unsat, when the problem is solved.

3.2 Worker Processes: Search-Based Solving under Assumptions

A worker process runs an instance of the QBF solver DepQBF which is initialized
with the complete input formula. We extended the API of DepQBF to allow
for assumptions as input. These assumptions can be regarded as assignments
to variables which are fixed in the current run. All the learnt information is
shared over different runs. Note that this information is only kept locally, so no
exchange between the different worker processes is realized. QBF solving with



Procedure simplify(t)

if t = Branch(∃, v, t1, t2) and simplify(t1) = sat then sat;
if t = Branch(∃, v, t1, t2) and simplify(t2) = sat then sat;
if t = Branch(∃, v, t1, t2) and simplify(t1) = simplify(t2) = unsat then unsat;
if t = Branch(∀, v, t1, t2) and simplify(t1) = unsat then unsat;
if t = Branch(∀, v, t1, t2) and simplify(t2) = unsat then unsat;
if t = Branch(∀, v, t1, t2) and simplify(t1) = simplify(t2) = sat then sat;
else if t = Branch(Q, v, t1, t2) then Branch(Q, v, simplify(t1), simplify(t2));

assumptions has been applied in the context of an incremental approach to QBF-
based bounded model checking of partial designs [16]. In this section, we describe
the handling of assumptions in DepQBF. Assumptions are used in MPIDepQBF
to split the search space and thus generate subproblems for the worker processes.

DepQBF [14] is a search-based QBF solver with conflict-driven clause learning
and solution-driven cube learning [9, 21]. In this approach, called QCDCL [15],
backtracking search is combined with the dynamic generation of new clauses and
cubes. Given a QBF, variables are assigned successively until either all clauses
of the QBF are satisfied or one clause is falsified under the current assignment.
Depending on the assignment, clauses are derived by Q-resolution [5] and cubes
are derived by the model generation rule and term resolution [9]. The newly
derived clauses and cubes are added to the formula as part of separate sets of
learnt clauses and learnt cubes to prune the search-space. The parallel variant
MPIDepQBF of DepQBF applies QCDCL where the given PCNF is solved under
a set of predefined variable assignments, called assumptions.

A set of assumptions A := {l1, . . . , ln} is a set of literals of variables such
that var(li) ∈ B1 for all literals li ∈ A. The variables of literals in A are from
the first block B1 of ψ. Each literal li ∈ A represents an assignment to the
variable var(li). Positive literals li = var(li) and negative literals li = ¬var(li)
represent the assignment of true and false to the variable var(li), respectively.
The PCNF ψ[A] under the assumptions A is obtained from ψ by deleting the
clauses which are satisfied under the assignments represented by A, deleting
literals from clauses in ψ which are falsified, and deleting superfluous quantifiers
from the quantifier prefix of ψ.

In MPIDepQBF, subproblems for the worker processes are generated by ap-
plying the definition of assumptions recursively to the formula ψ[A] under some
set A of assumptions. If A assigns all variables from the first block B1 of ψ, then
the quantifier prefix of ψ[A] has the form Q2B2 . . . QnBn. Since B2 is now the
leftmost block in ψ[A], variables from B2 can be assigned in some other set A′

of assumptions with respect to ψ[A].

The following properties follow from the semantics of QBF. Given an in-
stance ψ in PCNF, if Q1 = ∃ and ψ[A] is satisfiable then ψ is also satisfiable
since the variables of the literals in A are all from the first block B1. If Q1 = ∀
and ψ[A] is unsatisfiable then ψ is also unsatisfiable. These properties are checked
in Procedure simplify presented in Section 3.1.
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Fig. 1: Cactus plots on eval12r2-bloqqer (with (wl)/without (nl) learning) and eval12r2

Similar to SAT solving under assumptions, assumptions in QCDCL-based
QBF solving can be modeled on a syntactic level by adding unit clauses for
existential literals in A and unit cubes for universal literals. This is the “clause-
based multiple instances (CM)” approach in the terminology of [19].

Alternatively, assumption based reasoning can be realized on the semantic
level. Here, the variables of the literals in A are assigned as special decision
variables (also called branching variables) in ψ before the solver makes any
assignments to variables not in A. The backtracking procedure of QCDCL has
to be modified to guarantee that the assignments represented by A are never
retracted. This is the “literal-based single instance (LS)” approach [19]. As in
SAT solving, the advantage of the LS approach compared to CM is that all
the learnt clauses and cubes can be kept across different calls of the solver
with different sets of assumptions. Since assumptions are assigned as decision
variables, the learning procedure of QCDCL can never generate clauses and
cubes by resolving on variables in A. Because of this advantage, we implemented
the semantic LS approach in DepQBF. For the application in MPIDepQBF, we
applied a sophisticated analysis of variable dependencies based on the standard
dependency scheme implemented in DepQBF [14].

4 Evaluation

We evaluated the performance of MPIDepQBF as the number of cores is in-
creased. To this end, we used the eval2012r2 and eval12r2-bloqqer bench-
mark sets7, where the latter results from the former by applying the preprocessor
Bloqqer [3]. We run our experiments on a small portion of the supercomputer
Tsubame. In particular, we used the ‘V’ queue running on qemu virtual machines
with eight physical 2.93 GHz Xeon 5670 cores and 30 GB memory per node.

The left-hand side of Figure 1 shows the performance of MPIDepQBF with
various numbers of cores on instances from eval12r2-bloqqer with (wl) and
without learning (nl) using a timeout of one hour. Whereas with one core only
139 formulas are solved, with 128 cores 160 formulas can be solved. A detailed
comparison of the runtimes with different numbers of cores is shown in Figure 2.
Besides the number of solved formulas as well as the average runtime for solving

7 See http://www.kr.tuwien.ac.at/events/qbfgallery2013/results.html



# cores # solved avg time (s) avg time (s)
(x) both x/128 x cores 128 cores

1 137 168.11 62.26
8 148 180.64 64.03
16 149 154.44 76.26
32 151 163.74 79.46
64 155 122.96 98.47  1
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Fig. 2: Runtime comparison: (a) runtimes of x vs. 128 cores for the formulas solved
with both x and 128 cores, (b) scatter plot for runtimes of 1 vs. 128 cores

these formulas, we also show the average runtime for solving exactly the same set
of formulas when using 128 cores. In additional experiments, we experienced that
disabling learning drastically decreases the number of solved formulas. Although
workers in MPIDepQBF do not share learnt information, this demonstrates the
importance of each worker retaining its learnt information.

The right-hand side of Figure 1 shows performance on non-preprocessed in-
stances. Scaling is limited or non-existent, suggesting the importance of prepro-
cessing for MPIDepQBF. In particular, preprocessing breaks very long clauses
into shorter clauses, which is important for memory efficiency in MPIDepQBF.

Besides the experiments on Tsubame, we also evaluated MPIDepQBF on a
12-core 2.4 GHz Intel Xeon 5645 with 96 GB RAM. The results were similar to
those above. In particular, with one core 127, with two cores 130 formulas, with
four cores 137, with eight cores 139 and with twelve cores 140 formulas could be
solved within a timelimit of 600 seconds.

5 Conclusion

We presented MPIDepQBF, a parallel QBF solver based on a search-space split-
ting approach. A master process generates subproblems and distributes them to
arbitrarily-many worker processes, as described above in Section 3. Workers do
not exchange information with each other, but keep learnt information locally.
To this end, we extended DepQBF with support for assumption-based reason-
ing. Initial experiments show that more processing power results in a gain of
performance, especially when dozens of cores are available. For us, this is sur-
prising given that individual workers do not share learnt information with other
workers and gives several possibilities for future development using sophisticated
information sharing. In addition, the memory-efficient nature of DepQBF makes
usage of many-core, memory-constrained coprocessors promising. More experi-
ments are required to systematically characterize and understand the impact of
clause and cube sharing as done in previous works (e.g., [17]).

Our main motivation for working on parallel QBF solving is the desire to
solve hard QBF instances stemming from applications. Our hope is that larger
systems and parallel solvers will allow us to solve instances beyond the reach of
current solvers. That is, while we have challenging instances and access to large
systems, we did not have solvers that can utilize these systems.

MPIDepQBF is available at http://toss.sf.net/develop.html via SVN.
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