
Experiments with Reduction Finding

Charles Jordan1? and Lukasz Kaiser2

1 ERATO Minato Project, JST & Hokkaido University
2 LIAFA, CNRS & Université Paris Diderot

skip@ist.hokudai.ac.jp, kaiser@liafa.univ-paris-diderot.fr

Abstract. Reductions are perhaps the most useful tool in complexity
theory and, naturally, it is in general undecidable to determine whether
a reduction exists between two given decision problems. However, asking
for a reduction on inputs of bounded size is essentially a Σp

2 problem
and can in principle be solved by ASP, QBF, or by iterated calls to
SAT solvers. We describe our experiences developing and benchmarking
automatic reduction finders. We created a dedicated reduction finder that
does counter-example guided abstraction refinement by iteratively calling
either a SAT solver or BDD package. We benchmark its performance with
different SAT solvers and report the tradeoffs between the SAT and BDD
approaches. Further, we compare this reduction finder with the direct
approach using a number of QBF and ASP solvers. We describe the
tradeoffs between the QBF and ASP approaches and show which solvers
perform best on our Σp

2 instances. It turns out that even state-of-the-art
solvers leave a large room for improvement on problems of this kind. We
thus provide our instances as a benchmark for future work on Σp

2 solvers.

1 Introduction

Finding reductions between different decision problems is a central task in com-
plexity theory. Polynomial-time reductions are perhaps the most traditional, and
constructing such reductions generally involves creating certain gadgets or build-
ing some other form of structure on top of the instance that is to be reduced.
The intuition that finding reductions resembles structured constructions can be
captured formally: the reduction one finds is usually not only a polynomial-time
function, but often a log-space one, or even a quantifier-free projection.

The class of quantifier-free projections, defined formally in the next section,
is a very restricted subset of log-space functions. Still, they are sufficient to
capture important complexity classes (see Chapter 11 of [13]). For example3,
P=NP iff SAT ≤qfpCVP, and NL=NP iff SAT ≤qfpREACH. The hope when
focusing on weaker (but still sufficiently strong) reductions is that they will put
new complexity-theoretic results within reach, and there are examples where

? Supported in part by KAKENHI No. 25106501.
3 We write X ≤qfpY if there is a quantifier-free projection from X to Y. CVP is the

P-complete Circuit Value Problem, REACH is the NL-complete problem of directed
reachability, and SAT is the NP-complete propositional satisfiability problem.

this has actually been accomplished [1]. Quantifier-free projections also have a
significant advantage when trying to derive them automatically. They are by
definition formulas of a simple form, so one can enumerate them easily once
their dimension is fixed. In fact, instead of enumerating, one can write them
in symbolic form using propositional variables. This opens the way for using
propositional solvers to find such reductions automatically.

The problem of determining whether a quantifier-free projection exists be-
tween two given decision problems is still undecidable in general. But when we fix
the dimension of the reduction we are looking for and only ask for it to be correct
on inputs of bounded size, the question becomes essentially a Σp

2 problem – it is
of the form ∃X ∀Y ϕ where X and Y are sets of propositional variables and ϕ
is a quantifier-free propositional formula. This problem can then in principle be
solved by a QBF or ASP solver, or by iterated calls to a SAT solver.

This paper describes our experiments with this kind of automated reduction
finding. We present both a dedicated reduction finder called DE4 and a gen-
erator5 that allows to construct instances for QBF and ASP solvers that are
equivalent to the given reduction finding problem. It is therefore a source of
instances for which the hardness depends on the chosen parameters. To make
it easy to use these problems for benchmarking, we provide both the generator
(all source code is available as open-source) and the collection of qdimacs, qpro,
and lparse files for the set of parameters we used in our experiments.5

In the long term, automatic reduction finders may help obtain unexpected
complexity-theoretic results or re-discover stunning reductions. For example, the
coNL-to-NL reduction behind the Immerman-Szelepcsényi Theorem, awarded
the Gödel Prize in 1995, is in fact a dimension-8 quantifier-free projection and
can in principle be found by DE. But current solvers do not perform sufficiently
on high-dimensional instances: even dimension 3 is beyond reach of DE or any
other solver with the present approach. Still, none of these solvers has been tuned
for Σp

2 problems and DE is a young project. We believe that our benchmarks are
a source of meaningful, challenging SAT and 2QBF instances and we will work
to include them in the next SAT and QBF evaluations. If solvers can be tuned to
perform well on these kinds of instances, and improve their performance on Σp

2

problems in general, we may be able to obtain interesting complexity-theoretic
results in this way – so we encourage the community to experiment.

Related work. The idea of automatic reduction finding, together with the first
automated ReductionFinder, was developed in [3]. ReductionFinder works on
a database of decision problems specified in stratified Datalog and attempts to
place the problems into classes based on the existence of reductions. It uses the
ASP solver cmodels to search for reductions, and it has not previously been
compared to other reduction-finding attempts nor is it publicly available. We
focus entirely on the problem of finding a reduction between two given problems,

4 DE is available at http://www-alg.ist.hokudai.ac.jp/~skip/de
5 The generator with instructions and the collection of generated files we used for

testing are available from http://toss.sf.net/reductGen.html

http://www-alg.ist.hokudai.ac.jp/~skip/de
http://toss.sf.net/reductGen.html

and thanks to a private copy of ReductionFinder we also compare our results to
this previous approach.

2 Background in Descriptive Complexity

Classically, one defines a decision problem as a set of words and the complexity
of a problem as the amount of computational resources (time, space) required
to check on a Turing machine whether a word belongs to the set. In descriptive
complexity, we take a higher-level view of decision problems. Instances do not
need to be encoded as words, but are directly relational structures, for example
graphs. The role of a Turing machine is in turn played by a formula in some logic,
and the complexity of a problem is the expressive power required by the formula.
It turns out that different logics correspond to different complexity classes and
that all major complexity classes have logical characterizations.

Descriptive complexity provides a particularly convenient framework for au-
tomatically finding reductions. The fact that instances do not need to be encoded
as words allows us to express interesting reductions succinctly, and formulas, un-
like Turing machines, have natural normal forms. In this section we introduce
the background in descriptive complexity necessary for this paper; refer to [13]
or Chapter 3 of [8] for a more detailed introduction and additional material.

A relational signature τ := (Ra1
1 , . . . , R

ar
r , c1, . . . , cs) is a tuple of predicate

symbols Ri with arities ai and constant symbols cj . A finite τ -structure

A := (U,R1 ⊆ Ua1 , . . . , Rr ⊆ Uar , c1 ∈ U, . . . , cs ∈ U)

consists of a finite universe U , an ai-ary relation for each predicate symbol of τ ,
and a definition – an element of U – for each constant symbol.

For example, the signature for directed graphs contains a single, binary pred-
icate symbol E and so a directed graph consists of a finite set of vertices and
a binary edge relation. For convenience, we generally identify an n-element uni-
verse U with the set {0, . . . , n− 1}.

Formulas of first-order logic over a signature τ have the form

ϕ := Ri(x1, . . . , xai) | xi = xj | xi = cj | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xi ϕ | ∀xi ϕ,

where x1, x2, . . . are first-order variables, and the semantics, given an assignment
of the variables xi to elements ei of the structure, is defined in the natural way.
For example, ∃x1R(x1, x2) holds for an assignment x2 → e2 in A if, and only if,
there exists an element e1 of U such that (e1, e2) is in the relation R in A.

Formulas without free variables define properties in the natural way. For
example, ∀x, y ¬E(x, y) defines the property of having no edges, i.e. being an
empty graph. That is, the property defined by a formula ϕ is the set of all
structures on which ϕ holds. We use properties to specify decision problems.

Queries and reductions. Reductions map σ-structures to τ -structures, defining
the universe, relations, and constants by means of logical formulas. Reductions
are a special kind of query, and so we begin by defining first-order queries.

A first-order query from σ-structures to τ -structures is an r + s+ 2-tuple,

q := (k, ϕ0, ϕ1, . . . , ϕr, ψ1, . . . , ψs) .

The number k ∈ N is the dimension of the query. Each ϕi, ψj is a first-order
formula over the signature σ. Let A be a σ-structure with universe UA. The
formula ϕ0 has free variables x1, . . . , xk and defines the universe U of q(A),

U :=
{

(u1, . . . , uk) | ui ∈ UA,A |= ϕ0(u1, . . . , uk)
}
.

That is, the new universe consists of k-tuples of elements of the old universe,
where ϕ0 determines which k-tuples are included.

Each remaining ϕi has free variables x11, . . . , x
k
1 , x

1
2, . . . , x

k
ai

and defines

Ri :=
{

(u11, . . . , u
k
1), . . . , (u1ai

, . . . , ukai
) | A |= ϕi(u

1
1, . . . , u

k
ai

)
}
∩ Uai .

That is, ϕi determines which of the ai-tuples of U are included in Ri. Finally,
each ψi has free variables x1, . . . , xk and defines ci as the unique (u1, . . . , uk) ∈ U
such that A |= ψi(u1, . . . , uk).

First-order queries therefore transform σ-structures into τ -structures. Given
a property P of σ-structures and a property Q of τ -structures, a first-order re-
duction r from P to Q is a first-order query that satisfies an additional condition.
Namely, reductions must satisfy A ∈ P ⇐⇒ r(A) ∈ Q for all σ-structures A.

There are various kinds of first-order reductions (see [13]). Quantifier-free
projections are the weakest version usually considered. There, all formulas in the
reduction must be quantifier-free, and the reduction must also be a projection,
i.e., each bit of the output depends on at most one bit of the input, where the
bit is selected in first-order.

First-order reductions are weaker than, for example, polynomial-time reduc-
tions, and quantifier-free projections are even more restricted. However, natural
problems that are complete for natural complexity classes via polynomial-time
reductions tend to remain complete via these weaker reductions (see, e.g., [13]).
In this paper we consider parametrized classes of quantifier-free reductions where
all formulas are in disjunctive normal form (DNF). Therefore, all formulas in the
reductions we consider are quantifier-free, however, the reductions are not nec-
essarily projections. We also consider only formulas ψi that directly define the
constant ci (i.e., a fixed tuple of constant symbols from σ and UA) and require ϕ0

to be always true. These restrictions are for simplicity, and have minimal impact
from the complexity-theory perspective, given that constants can be omitted or
replaced by monadic relations.

Extending first-order logic. So far, we have focused only on first-order logic.
Although it is generally more than adequate for reductions, first-order logic has
several drawbacks when used to express properties. First of all, it is not expressive
enough to describe many relations that can easily be computed. This limitation
stems from the locality of first-order formulas. This property implies that it is
not possible to express the transitive closure of a relation in first-order logic, so,
e.g., also the property that a graph is connected.

To remove this limitation of first-order logic, one extends it with various op-
erators. For example, the transitive closure operator allows us to write formulas
of the form TC[x1, x2.ϕ(x1, x2)](y1, y2). This formula takes the transitive and re-
flexive closure of the (implicit) relation defined by ϕ(x1, x2) and then evaluates
it on (y1, y2). Adding the transitive closure operator removes some limitations
of FO, but how can we know what other problems remain? Let us review some
of the best-known correspondences between logics and complexity classes.

The oldest result [6] shows that the class NP is captured by existential second-
order logic. More practically, polynomial-time computations are captured by the
extension of FO by the least fixed-point operator (LFP) when a linear order rela-
tion is present [11,18]. The requirement of a linear order can be weakened when
a counting mechanism is added to the logic, and LFP with counting captures P
on many classes of structures, such as grids, planar graphs [9] and all classes
that exclude a fixed minor [10]. Although LFP is presumably more expressive
than the transitive closure logic (TC) we mentioned, TC captures all problems
solvable in non-deterministic logarithmic space (NL) on ordered structures [12].

Example 1. Having introduced the transitive closure operator and our notion of
reductions, let us give a simple example that our reduction-finding systems can
find6. Consider the following formulas,

Reach := TC[x, y.E(x, y)](s, t) AllReach := ∀x1, x2 (TC[y, z.E(y, z)](x1, x2)) .

Here, Reach expresses the NL-complete problem of reachability (there exists a
directed path from s to t) and AllReach expresses the NL-complete problem of
all-pairs reachability (there is a directed path from x to y for all vertices x, y).

Using the notation for reductions introduced above, a correct reduction from
Reach to AllReach is

(k := 1, ϕ0 := true, ϕ1 := x1 = s ∨ x2 = t ∨ E(x2, x1)) .

This reduction reverses all edges in the original graph, adds directed edges from s
to all vertices and also adds directed edges to t from all vertices. It is not difficult
to see that the result is strongly connected if, and only if, the original graph has a
directed path from s to t. Note that a similar reduction exists without reversing
the edges – however the above is the actual output of our program.

3 Finding Reductions

The fundamental problem that we want to solve is the following. Given two
logical formulas ϕP and ϕQ, is there a reduction from the property defined by ϕP

to that defined by ϕQ? Unfortunately, this problem is undecidable. In fact, it is
also undecidable to determine whether a given reduction is correct for two fixed
properties, or even whether two given properties are logically equivalent.

6 With parameters k = 1, c = 3, n = 4 in < 3s.

Our fundamental approach is to fix an “outline” of the reduction we hope
to find. For example, we may assume that all formulas7 in the reduction are
quantifier-free, in DNF, and are a disjunction of exactly c conjunctions. Once
the signatures are fixed, there is only a finite number of atoms that could occur
in these conjunctions. This is because there are only finitely many variables (we
cannot introduce new variables with quantifiers) and constants, and only finitely
many ways to combine these symbols with the relation symbols and equality.
For each atom and conjunction, we introduce a Boolean variable representing
whether or not the atom occurs in that conjunction of the reduction. Intuitively,
we can now express the existence of a reduction as a logical formula

∃r ∀A (A |= ϕP ↔ r(A) |= ϕQ) , (1)

where r is the finite set of Boolean variables defining the reduction, and A ranges
over all structures having the same signature as ϕP .

Of course, there are infinitely many such structures, which explains why the
problem is still undecidable. However, experience shows that it usually suffices
to consider structures of fairly small size, at least for natural problems and
natural classes of weak reductions. That is, although one can construct artificial
properties where arbitrarily large examples are needed, it seems that if a simple
reduction between natural problems is correct on all small instances, then it is
usually correct on all instances.

Therefore we focus, as did [3], on finding reductions that are correct on all
structures of size n. Here, n is a parameter and it is also possible to consider
ranges of n. Once n is fixed, as well as the outline for r, checking Formula (1)
becomes decidable. In fact, it is natural to represent A with Boolean variables,
and so Formula (1) becomes a one-alternation quantified Boolean formula. Sat-
isfiability of such formulas8 is complete for Σp

2 .

Example 2. Let us show how the QBF for Formula (1) is constructed in the fol-
lowing case. Let P be the class of non-empty graphs defined by ϕP = ∃x, y E(x, y)
and let Q be the class of non-complete graphs given by ϕQ = ∃x, y ¬E(x, y). We
ask whether there is a quantifier-free reduction from P to Q of dimension k = 1,
with c = 1 conjunctions, and that is correct on all graphs of size n = 2.

First, let us fix the outline for our reduction with one conjunction. Note
that σ = τ = {E}, so in this case the reduction we are looking for has the
following form: (k := 1, ϕ0 := true, ϕ1(x1, x2)) for some formula ϕ1(x1, x2)
which is a conjunction of literals. What atoms are possible over the signature {E}
with variables x1, x2? There are exactly 5 atoms in the basic syntax: E(x1, x1),
E(x1, x2), E(x2, x1), E(x2, x2), and x1 = x2. So, in this most basic case, the
outline for ϕ1 has the form ϕ1(x1, x2) =

X1E(x1, x1) ∧ X2E(x1, x2) ∧ X3E(x2, x1) ∧ X4E(x2, x2) ∧ X5x1 = x2 ∧
Y1¬E(x1, x1) ∧ Y2¬E(x1, x2) ∧ Y3¬E(x2, x1) ∧ Y4¬E(x2, x2) ∧ Y5¬x1 = x2.

7 As mentioned above, we always fix ϕ0 = true and define constants by fixed tuples.
8 Note that Formula (1) has leading existential quantifiers; satisfiability of one-

alternation formulas with leading universal quantifiers is complete for Πp
2 .

Above, Xi and Yi are propositional variables that determine whether the literal
after them will appear or not: X1E(x1, x2) means “E(x1, x2) if X1 is set and
true otherwise”, as becomes clear below. An outline is thus a formula with these
additional propositional variables used as guards.

In all our tests, we use an extended set of atoms, not only the basic ones
presented above for readability. In the extended set, in addition to relations
over variables and equality as above, we allow the following atoms: for a fixed
enumeration of the elements of the structure, we say that x is the minimal one,
the maximal one, or that x = y + 1. This allows to find more reductions with
the same outline parameters.

Having constructed the outline, let A be a 2-element structure and assume
that the tuple (i, j), for i, j ∈ {0, 1}, is in the relation E in A if, and only if, the
propositional variable Eij is set. Note that the part A |= ϕP of Formula (1), in
our case A |= ∃x, y E(x, y), can now be written as a purely propositional formula:∨

i,j∈{0,1}Eij . To express that r(A) |= ϕQ we need to use the definition of E in

r(A) given by ϕ1. In our case, for r(A) |= ∃x, y ¬E(x, y) we write
∨

i,j∈{0,1} ¬ϕij .
Here ϕij is derived from the outline of ϕ1 using the propositional variables Eij .
For the basic outline presented above, that means ϕij =

(¬X1 ∨ Eii) ∧ (¬X2 ∨ Eij) ∧ (¬X3 ∨ Eji) ∧ (¬X4 ∨ Ejj) ∧ (¬X5 ∨ i = j) ∧
(¬Y1 ∨ ¬Eii) ∧ (¬Y2 ∨ ¬Eij) ∧ (¬Y3 ∨ ¬Eji) ∧ (¬Y4 ∨ ¬Ejj) ∧ (¬Y5 ∨ i 6= j),

where i = j and i 6= j get substituted by true or false depending on i and j.
In this way, we obtain the following propositional formula, which we call the

QBF corresponding to Formula (1) for k = 1, c = 1, n = 2.

∃X1 . . . X5 Y1 . . . Y5 ∀E00 . . . E11

 ∨
i,j∈{0,1}

Eij ↔
∨

i,j∈{0,1}

¬ϕij

 .

Observe that this formula is satisfied exactly if there is a reduction with the spec-
ified outline correct on all structures of the specified size. Moreover, if satisfied,
the outer-most existentially quantified variables allow to extract a reduction.

3.1 Approaches to Solving Σp
2 Problems

Several approaches have been used to solve problems in Σp
2 . Actually construct-

ing the QBF for Formula (1) as above is fairly tedious, but poses no serious
difficulty. This results in a QBF instance with one quantifier alternation where
a satisfying assignment of the existential variables gives a reduction, so QBF
solvers can be immediately applied.

Although they are perhaps not yet as mature as SAT solvers, in recent years
there has been a great deal of work on efficient QBF solvers. See, for example,
the QBFEVAL series of evaluations [17]. QBFEVAL’10 also included a 2QBF
track, and we believe our instances could be attractive candidates for inclusion
in that track. Still, as will be clarified below, in our case it is often more efficient
to present the formula as a 3QBF instance.

In addition to QBF solvers, there are other approaches that have been used
to solve Σp

2 problems. For example, ASP solvers that support disjunctive logic
programs can solve such problems using the reduction to disjunctive logic pro-
grams given by [4,16]. Examples of such solvers are cmodels and claspd, and
some previous work [5] has indicated that ASP solvers may outperform QBF
solvers on Σp

2 problems.
Another option is to expand the universal quantifier block of the formula

using a conjunction over all possible assignments, resulting in a SAT instance.
This allows SAT solvers to be used directly, however it entails an exponential
increase in instance size. In our experience, this is impractical for large instances.

Finally, some recent work [3,14,15] has noted that one can use repeated calls
to SAT solvers to solve Σp

2 instances, essentially an application of counter-
example guided abstraction refinement (CEGAR) [2]. This approach is also
a finitely-truncated implementation of limit-learning [7], using guesses for the
leading existential quantifiers as hypotheses and assignments to the universal
quantifiers as counter-examples. Our dedicated reduction finder DE uses this
approach.

In our view, the connection to limit-learning gives a particularly nice per-
spective on our problem. For example, removing the finite-size restriction needed
for decidability results is exactly an attempt to learn reductions from counter-
examples in the limit. Of course, it is undecidable whether such a learner has
converged to a correct hypothesis. Techniques from inductive inference may pro-
vide valuable guidance on efficient learning, i.e., minimizing total computation
time, or number of counter-examples required.

4 Reduction Finding using QBF and ASP Solvers

In this section, we compare the performance of various QBF and ASP solvers on
our problem. Our approach to generating QBF instances for reduction finding
was outlined above. Essentially, we view the problem from the perspective of
Formula (1) as a QBF instance and apply the above-mentioned approaches.

Note that Formula (1) is of the form ∃r ∀Aψ. The reduction r contributes
existential propositional variables, the structure A is the source of universal
variables, and ψ is a quantifier-free propositional formula. While it is quantifier-
free, in general this formula is not in conjunctive normal form (CNF). Most QBF
solvers require their input to be in CNF and CNF conversion usually involves
introducing new existentially quantified variables, which must be innermost.

We investigate three approaches to dealing with the conversion to CNF. First,
there are QBF solvers that only require the formula to be in negation normal
form (NNF), not CNF. The most common input format for such solvers is called
qpro and in this case we generate the formula directly.

The second approach is to convert the propositional part of Formula (1)
to CNF adding new existential variables.9 In this case, we produce output in

9 We used the standard Plaisted-Greenbaum technique for this, which in our tests
slightly outperformed the often used Tseitin method.

qdimacs format. The resulting formula is of the form ∃X ∀Y ∃Z ψCNF – it has
one more quantifier alternation than strictly necessary.

The third approach is to first negate Formula (1), which then has the form
∀r ∃Aψ. We then convert ψ to CNF as above, and generate a qdimacs file with
only one quantifier alternation.

Finally, we also generate lparse files for ASP solvers, as described in Sub-
section 3.1. This results in the following four cases that we test and benchmark.

qpro Constructing QBF for Formula (1) and using QBF solvers that support non-
CNF QBF (cirqit).

qdimacs Constructing QBF for Formula (1) and converting directly to CNF, then
using QBF solvers (rareqs, depqbf, qube7.2, skizzo, cirqit).

nqdimacs Negating Formula (1) before CNF conversion to avoid one quantifier alterna-
tion, and using QBF solvers (rareqs, depqbf, qube7.2, skizzo, cirqit).

lparse Constructing Formula (1) and using ASP solvers that support disjunctive
logic programs (lparse or gringo, and cmodels, claspd or gnt2).

Some of the combinations listed above performed quite poorly even on very
simple reduction finding instances. In particular, cmodels and gnt2 almost
always abort (but produce correct output if they do not abort), and using cirqit
with nqdimacs is very slow (but produces correct output). We therefore omit
these combinations from our experimental results.

4.1 Comparing the QBF Approaches

We first concentrate on the following question: which of the three approaches to
using QBF solvers, qdimacs, nqdimacs, and qpro, performs best? It turns out
that there is a clear answer: qdimacs is the best option.

Comparing qdimacs and nqdimacs. Given the explanation above, one might
think that nqdimacs is a more promising formulation for our instances – it
expresses the same problem but avoids one quantifier alternation. We were mildly
surprised to see that all QBF solvers we tested consistently performed worse on
nqdimacs than on qdimacs instances with one more quantifier alternation. In
Table 1 below we present the number of timeouts for qdimacs and nqdimacs

instances for the easiest set of parameters we tested: k = 1, c = 1, and n = 3.
Clearly, both depqbf and qube performed much better on qdimacs than on
nqdimacs, e.g. there were no timeouts (set to 120s in this section) on any qdimacs

instance for these two solvers but several hundred (out of 230410) for nqdimacs,
and the completed instances also took longer to finish. For skizzo the situation is
less clear but the general pattern is the same. The CEGAR-based solver rareqs
had only 2 timeouts on this instance, both in the negated setting, but exhibits
the same pattern for c = 2 (0 vs. 304 timeouts).

10 We used 48 decision problems from [3] to be able to compare to ReductionFinder.
They range from very simple, like the empty graph, to the NL-complete reachability
and coNL-complete unreachability problems.

qdimacs nqdimacs

depqbf 0 300
qube 10 285
skizzo 522 706

Table 1. Number of timeouts for qdimacs and nqdimacs solvers.

Comparing qdimacs and qpro. When comparing qdimacs and qpro we must
note that most QBF solvers accept qdimacs input while we found only one,
cirqit, that accepts qpro and is freely available. This is crucial: either depqbf
or qube reading qdimacs outperform cirqit uniformly, on all instances, with 1s
margin of error, and both these solvers have far fewer timeouts than cirqit. On
the other hand, when comparing only cirqit on qdimacs input with cirqit on
qpro input, neither has a clear advantage – there are numerous instances where
one times out and the other does not, and also instances where the opposite
occurs. In Table 2 we show the number of timeouts of different solvers on three
parameter sets of increasing difficulty.

k = 1 c = 1 n = 3 k = 1 c = 2 n = 3 k = 1 c = 3 n = 3

rareqs (qdimacs) 0 0 16
depqbf (qdimacs) 0 142 547
qube (qdimacs) 10 536 949
cirqit (qdimacs) 58 673 1138
cirqit (qpro) 157 523 903

Table 2. Number of timeouts for qdimacs and qpro solvers.

The behavior of cirqit on qdimacs and qpro instances shows that one can
benefit from knowing the structure of the formula. Together with the fact that
qdimacs outperforms nqdimacs, these seem to indicate that a more careful han-
dling of the innermost formula could lead to more efficient solvers.

Comparing QBF solvers. Having settled on qdimacs, we now compare the per-
formance of the five QBF solvers on different parameter sets. In Table 3 we
report the number of timeouts for each solver and each parameter set.

For non-CEGAR solvers, depqbf and qube outperform skizzo and cirqit.
Between depqbf and qube the situation is less clear, some instances work much
better with one of these solvers, others with the other. The comparison between
skizzo and cirqit is difficult as well. As to the dominance of depqbf and
qube over skizzo and cirqit, it holds for almost all queries. Still, there are a
few outliers on which depqbf and qube time out, but skizzo answers almost
immediately. This allows to hope that tailoring the strategies of QBF solvers
towards Σp

2 problems might still lead to significant performance gains.

c = 1 n = 3 c = 2 n = 3 c = 3 n = 3 c = 1 n = 4 c = 2 n = 4 c = 3 n = 4

rareqs 0 0 16 19 65 204
depqbf 0 142 547 16 297 711
qube 10 536 949 82 760 1082
cirqit 58 673 1138 511 1092 1357
skizzo 522 1058 1156 975 1327 1434

Table 3. Number of timeouts for different QBF solvers, k = 1.

4.2 Comparing Different Approaches to Reduction Finding

Having discussed the QBF approaches and chosen the best QBF solvers, let us
finally compare the QBF approach with the approach using ASP solvers, and
also with our reduction finder DE and ReductionFinder from [3].

Different ASP solvers. We consider three different ASP solvers (cmodels, gnt2,
and claspd) and two different grounding programs (lparse and gringo).
Grounding is performed before the solver is started, and may take significant
time. However, we time the total of grounding and solving and so it is possible
for the grounding program to timeout before the solver begins.

Two of the solvers (cmodels and gnt2) abort very frequently, even on simple
instances and regardless of the choice of grounding program. Therefore we only
show results for claspd with lparse and gringo. Interestingly, while the total
number of timeouts was similar for the two grounders, there were numerous
instances where one timed out and the other finished quickly. This may give
some reason to hope that significantly better performance may be possible with
this approach with more careful grounding.

Results. In Table 4 we compare the different reduction finding approaches that
we tested. For the SAT-solver based DE runs, we have chosen de-gms11 as it
performs best on hard instances. For BDD-based DE runs, we show de-cudd,
the only reduction finder we tested that used BDDs. For QBF solvers we have
chosen the two best performers, rareqs and depqbf. Note, that rareqs is a
CEGAR-based solver, more similar to de-ms than depqbf. For ASP solvers, we
show claspd both with lparse and gringo, as explained above.

We also include the results for ReductionFinder [3]. ReductionFinder only
considers reductions of a slightly different form – this usually results in a simpler
instance, so it is shown here only for comparison. All other approaches we present
find reductions of exactly the same form – naturally, the answers (whether there
is a reduction or not) agree on all parameter sets that we tested.

The CEGAR approach, whether in DE or in rareqs, outperforms the oth-
ers. Other QBF solvers (depqbf, qube) match the performance of the original
ReductionFinder and in general perform better than the ASP approach.

11 DE can use MiniSat2 (de-ms), GlueMiniSat (de-gms), CryptoMiniSat (de-cms) or
BDDs (de-cudd).

c = 1 n = 3 c = 2 n = 3 c = 3 n = 3 c = 1 n = 4 c = 2 n = 4 c = 3 n = 4

de-gms 0 (100.0%) 0 (100.0%) 10 (99.6%) 0 (100.0%) 5 (99.8%) 103 (95.5%)
de-cudd 0 (100.0%) 116 (95.0%) 537 (76.7%) 0 (100.0%) 186 (91.9%) 722 (68.7%)
rareqs 0 (100.0%) 0 (100.0%) 16 (99.3%) 19 (99.1%) 65 (97.1%) 204 (91.1%)
depqbf 0 (100.0%) 142 (93.8%) 547 (76.2%) 16 (99.3%) 297 (87.1%) 711 (66.1%)
gringo 40 (98.3%) 393 (82.9%) 590 (74.4%) 72 (96.9%) 593 (74.3%) 836 (63.7%)
lparse 51 (97.8%) 396 (82.8%) 605 (73.7%) 75 (96.7%) 635 (72.4%) 850 (63.1%)

RedFind 1 (99.9%) 152 (93.4%) 396 (82.8%) 2 (99.9%) 347 (84.9%) 547 (76.3%)

Table 4. Number of timeouts (% solved) for tested reduction finding approaches, k = 1.

5 Reduction Finding using CEGAR

We now compare CEGAR approaches to reduction finding. We begin by describ-
ing the reduction finding procedure used in DE and then compare the reduction-
finding implementations in DE with rareqs, focusing on difficult instances.

5.1 Finding Reductions in DE

DE finds reductions by first choosing a candidate reduction r0, then searching
for a counter-example (i.e., a structure A such that A |= ϕP ⇐⇒ r0(A) 6|= ϕQ).
If a counter-example is found, it searches for a reduction that is correct on all
examples seen so far, i.e., if we have seen examples {A0, . . . ,Ai}, then we search
for an assignment of the Boolean variables r such that

(A0 |= ϕP ↔ r(A0) |= ϕQ) ∧ · · · ∧ (Ai |= ϕP ↔ r(Ai) |= ϕQ) , (2)

and iterate until either no counter-example or no candidate reduction is found.
In Formula (2), whether Aj |= ϕP is known, so some simplifications can be

easily performed. In our experience (and that of [3]), finding candidate reduc-
tions is more difficult than finding counter-examples. We therefore focus mostly
on finding candidate reductions. However, we have optional heuristics to help
choose good counter-examples. The times reported for DE alternate greedy min-
imization and maximization of counter-examples12, except for CryptoMiniSat.

We implement candidate-finding using incremental SAT solvers or BDDs
(using CUDD). Formula (2) is a natural candidate for incremental SAT solving:
there are comparatively few Boolean variables r which are re-used, and at each
stage we simply add the restriction corresponding to the new counter-example.

Using BDDs for candidate-finding is similar. At each stage, we have a BDD
representing the set of candidate reductions that are consistent with the pre-
vious counter-examples. Given a new counter-example, we build a BDD of the
hypotheses consistent with it and take the intersection of the two sets. However,
to acquire a new counter-example, we must have a particular hypothesis.

12 Given a counter-example, we greedily remove or add tuples to relations while check-
ing that it remains a counter-example.

We take the “simplest” candidate reduction as our hypothesis, i.e., we select
from the set of candidates consistent with the examples we have seen a candidate
with the minimal number of atomic formulas appearing. This has an advantage:
there are often several correct reductions in a search space. In this case, the BDD
implementation will give a simplest correct reduction. The difference in size (and
clarity) between this reduction and others can be substantial. We therefore often
prefer the output of the BDD version. However, it is usually slower and much
more memory-intensive than the SAT versions (see Subsection 5.2 below).

There is a known bug13 in MiniSat2 related to simplification. This affects us,
and so we disable simplification in MiniSat2. The same bug appears to be present
in Glucose, so we do not benchmark Glucose. CryptoMiniSat and GlueMiniSat
appear to be unaffected, and we leave simplification enabled for them.

5.2 Performance Results

In this subsection, we focus on a particular difficult instance, searching for re-
ductions from REACH (the coNL-complete problem of checking whether there
is no directed path from s to t in a graph) to REACH (the NL-complete problem
of checking whether there is such a path). Finding a (correct) reduction between
these problems proves the Immerman-Szelepcsényi Theorem. It is known that a
dimension-8 QFP exists, it is interesting to determine whether k = 8 is required.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20 25

de-ms
de-gms
de-cms

de-cudd
rareqs

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25

de-ms
de-gms
de-cms

de-cudd
rareqs

Fig. 1. CEGAR performance (in seconds) scaling n (left), c (right)

Our implementations do not approach k = 8. To begin, we fix simple param-
eters of k = 1, c = 1, n = 3 and examine performance when scaling k, c, n. The
results are in Figure 1 and Table 5, with a (minimum) timeout of four hours.
In our experience, rareqs performs best when scaling c and the GlueMiniSat
version performs best when scaling n. This is due to differences in how we handle
common subformulas in DE and QBF generation – it is possible to unify these.

When actually searching for reductions, we can range over counter-example
sizes (starting with n = 1 or n = 2). The small counter-examples exclude many

13 https://github.com/niklasso/minisat/issues/3

de-ms de-gms de-cms de-cudd rareqs

k = 1, c = 1, n = 3 0.05 0.06 0.08 0.07 0.03
k = 2, c = 1, n = 2 0.06 0.11 0.28 6.30 0.06
k = 2, c = 1, n = 3 3562.14 1696.26 1755.03 timeout 3267.10

Table 5. Times (in seconds) as k increases.

candidates, giving a large performance improvement14. For this example, no
reduction in this space exists for n = 5, so our implementations would stop at
that point. Increasing only n decreases the likelihood of a reduction existing,
making the instance more strongly negative.

Scaling only c is similar; a “reduction” (correct on graphs of size 3 but not
in general) exists at c = 4. In this example, the instance becomes more strongly
positive as c increases. However, scaling these parameters shows the limit of
our current approaches. Even with scaling, our implementations do not perform
reasonably on hard instances (properties which use transitive closure) with k > 2.

Above we considered baseline settings of k = 1, c = 1, n = 3 and scaled a
single parameter. In Figure 2, we scale n with a slightly-modified baseline of
k = 1, c = 2 to show performance with more than one conjunction.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25

de-ms
de-gms
de-cms

de-cudd
rareqs

Fig. 2. CEGAR performance scaling n with k = 1, c = 2.

14 We do not include range benchmarks here. They give additional advantages to the
CEGAR approach.

SAT vs BDD. The largest difference in performance between DE versions is
between the BDD implementation and the SAT implementations. The BDD
implementation maintains a structure explicitly representing all reductions con-
sistent with the examples seen so far. This is memory-intensive and slower than
the SAT versions, which only find a single explicit candidate at each stage.

However, the BDD version chooses a simplest candidate at each step. This
usually results in the BDD version requiring fewer iterations of the counter-
example/candidate loop, although each iteration is more expensive. For exam-
ple, if we look for a reduction from the query R(s) to the query ∃xR(x) with
parameters k = 3, c = 4, n = 6, DE with CryptoMiniSat uses 7 counter-examples
and finds a correct, but unnecessarily complicated, reduction. DE with CUDD
uses 3 examples and finds the simplest reduction in this search space.

Comparing SAT solvers. The SAT-based DE implementations and rareqs out-
perform the other approaches we consider. However, differences between the SAT
solvers are visible in the results above. On the hardest examples we consider,
DE with GlueMiniSat is best for large n. Our generator handles common sub-
formulas better than DE, visible in the performance of rareqs when scaling c.

On easy instances, DE using MiniSat often outperforms the others. This is
likely because we disable simplification to avoid a bug in MiniSat and simplifica-
tion is not needed for these instances. However, in practice we prefer the BDD-
based implementation in such cases: any approach suffices for these instances
and we prefer the more-understandable reductions found by this version.

When searching over ranges of counter-example sizes, GlueMiniSat usually
performs best and we prefer GlueMiniSat on hard instances. CryptoMiniSat sup-
ports parallel SAT-solving – we do not use this, but it may improve performance.

6 Conclusions

We have developed and benchmarked several approaches to the problem of au-
tomatically discovering reductions between decision problems15. For each ap-
proach, it is possible to find instances where it outperforms the others. However,
it is possible to state several clear conclusions. The dedicated CEGAR approach
is generally the best, and GlueMiniSat performs best on hard instances. Our
BDD-based approach gives the nicest output. The performance of QBF solvers
depends heavily on the way in which the innermost formula is converted to CNF.
For ASP solvers, much depends on the grounder used before the solver starts.

Our experiments show that each of the tested approaches – QBF solvers, ASP
solvers, and the CEGAR method – still leaves a large room for improvements.
We provide our testing instances and their generator, we will submit them to
relevant competitions, and we encourage the community to use them for testing
and optimization of all mentioned solvers. Moreover, we hope that it is possible
to combine the strengths of each approach together with new improvements, in
order to achieve better performance on hard, meaningful instances.

15 Visit http://toss.sf.net/reduct.html to test the CEGAR approach online.

http://toss.sf.net/reduct.html

References

1. Allender, E., Balcázar, J.L., Immerman, N.: A first-order isomorphism theorem.
SIAM J. Comput. 26(2), 539–556 (1997)

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

3. Crouch, M., Immerman, N., Moss, J.E.B.: Finding reductions automatically. In:
Fields of Logic and Computation – Essays Dedicated to Yuri Gurevich on the
Occasion of His 70th Birthday. LNCS, vol. 6300, pp. 181–200. Springer (2010)

4. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–
323 (1995)

5. Faber, W., Ricca, F.: Solving hard ASP programs efficiently. In: Proc. of LP-
NMR’05. LNCS, vol. 3662, pp. 240–252. Springer (2005)

6. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Complexity of Computation, SIAM-AMS Proceedings. vol. 7, pp. 43–73. Amer.
Mathematical Soc. (1974)

7. Gold, E.: Language identification in the limit. Inform. Control 10(5), 447–474
(1967)

8. Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema,
Y., Weinstein, S.: Finite Model Theory and Its Applications. Texts in Theoretical
Computer Science, Springer (2007)

9. Grohe, M.: Fixed-point logics on planar graphs. In: Proc. of LICS’98. pp. 6–15.
IEEE Computer Society (1998)

10. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded
minors. J. ACM 59(5), 27:1–27:64 (2012)

11. Immerman, N.: Relational queries computable in polynomial time. Inform. Control
68, 86–104 (1986)

12. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput.
16(4), 760–778 (1987)

13. Immerman, N.: Descriptive Complexity. Springer-Verlag (1999)
14. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-

terexample guided refinement. In: Proc. of SAT’12. LNCS, vol. 7317, pp. 114–128.
Springer (2012)

15. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Proc. of
SAT’11. LNCS, vol. 6695, pp. 230–244. Springer (2011)

16. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7(3), 499–562 (2006)

17. Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O., Lynce, I.: The
seventh QBF solvers evaluation (QBFEVAL’10). In: Proc. of SAT’10. LNCS, vol.
6175, pp. 237–250. Springer (2010)

18. Vardi, M.Y.: The complexity of relational query languages. In: Proc. of STOC’82.
pp. 137–146. ACM (1982)

	Experiments with Reduction Finding

