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1 Introduction

The vast majority of mathematical programming software was designed and
implemented for the prevalent computers of the last century, which gener-
ally had single processors. Improvements in algorithmic design and processor
speed, in roughly equal measure, led to enormous speed-ups allowing increas-
ingly large problems to be solved in reasonable time. These legacy computer
codes are sophisticated and extremely robust, having been extensively tested
on a wide range of platforms and applications. Previously, parallel processing
was limited largely to expensive supercomputers. In recent years the situa-
tion has changed radically; increases in processor speed have been replaced
by the ubiquity of multicore processors. Desktop computers usually include
at least four CPU cores and relatively inexpensive compute servers provide
64 cores in a shared memory machine. Networks of such computers readily
provide hundreds of available cores. Unfortunately, very little legacy software
for mathematical programming can make effective use of this hardware.

Some algorithms, such as those based on the simplex method, seem in-
herently sequential and will require new ideas to exploit large scale parallel
processing. Others, such as integer programming via branch and cut, are ba-
sically tree searches that should benefit greatly from parallelism. For exam-
ple, the Concorde code for the travelling salesman problem [3l4] used large
scale parallelism to solve extremely large problems to optimality over a dis-
tributed network. General integer programming solvers such as CPLEX [42]
and Gurobi [35] also make use of multicore and distributed computing. A com-
putational study using Gurobi is contained in Koch et al. [44]. Using a shared
memory machine, they report speedups of roughly 9 times with 32 cores and
25 times with 128 cores for integer programming instances tested. Using a
distributed system with 8000 cores they report an estimated speedup of ap-
proximately 800 times. However, tests by Carle [I9] show that results may be
very disappointing if some processors are considerably slower than others, even
with only 4 or 8 processor&ﬂ Much work clearly needs to be done in this area.

In this paper we report on the parallelization of Irs, a tree search algorithm
for the vertex/facet enumeration problem. The method we developed has the
following features which are discussed in detail below: (a) there is little mod-
ification to a complex legacy code; (b) the parallelism is applied only in a
wrapper; (c) the subproblems are not interrupted; (d) there is no communi-
cation between these threads; and (e) it works on both shared-memory and
distributed systems with essentially no user intervention required. We also re-
port computational results on a variety of problems and hardware that show
near linear speedups, in some cases up to 1200 processors.

Vertex/facet enumeration problems find applications in many areas, of
which we list a few herdﬂ Early examples include computing the facets of cor-
relation/cut polyhedra by physicists (see, e.g., [21L26]) and current research

1 See posts for December 9, 2014 (Gurobi) and February 25, 2015 (CPLEX).
2 John White prepared a long list of applications which is available at [6].
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in this area relates to detecting quantum behaviour in computers such as D-
Wave. Research on facets of travelling salesman polytopes leads to important
advances in branch-and-cut algorithms, see, e.g., [4]. For example, Chvétal
local cuts are derived from facets of small TSPs and this idea is also seen in
the small instance relaxations of Reinelt and Wenger [55]. Vertex enumera-
tion is used to compute all Nash equilibria of bimatrix games and a code for
this based on Irs is found at [6]. Vertex enumeration may be a last resort for
minimizing extremely complicated concave functions. See, for example, Chap-
ter 3 of Horst et al. [40]. This application shows the advantage of getting the
output as a stream, most of which can be immediately discarded. When do-
ing facet enumeration Irs automatically computes the volume of the polytope
using much less memory than other methods, such as those described in [30].

The remainder of the paper is organised as follows. We begin by introducing
related work in Section [2| and then proceed to background on vertex enumera-
tion, reverse search, Irs and plrs in Section [3] This is followed in Section[4 by a
discussion of various parallelization strategies that could be employed to man-
age the load balancing problem. In Section [5| we discuss the implementation
of mplrs and describe its features. In Section [f] we give some test results on a
wide range of inputs, comparing 7 codes: cddr+, normaliz, PORTA, ppl_lcdd, Irs,
plrs and mplrs and present an analysis of our findings where we see that mplrs
scales further than other vertex enumeration codes. Finally in the conclusion
we compare our results with those obtained for parallel integer programming
and discuss the wider applicability of our research.

2 Related Work

We begin by reviewing the available algorithms and codes for vertex enumer-
ation, focusing in particular on parallel codes. Codes for this problem were
recently compared by Assarf et al. [5], however they focus primarily on se-
quential codes and therefore utilize comparatively easy instances. Then we
introduce work on parallel reverse search, and also work on other parallel
search problems that may appear related to mplrs.

There are basically two algorithmic approaches to the vertex enumeration
problem: the Fourier-Motzkin double description method (see, e.g., [61]) and
pivoting methods such as Avis-Fukuda reverse search [10] which enumerates
all nodes of a tree. The double description method involves inserting the half
spaces from the H-representation sequentially and updating the list of vertices
that they span. Readily available codes for this method include cddr+ [31],
normaliz [52], ppl_lcdd [14] and PORTA [22]. Although this sequential method
did not seem easy to parallelize, it was recently achieved and implemented
in normaliz. This breakthrough for the double description method involves a
new technique called pyramidal decomposition [18]. This decomposition is not
equivalent to a standard polyhedral decomposition and is much less costly to
compute. We include experimental results for normaliz in Section [6}
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2.1 Irs and parallelization

The reverse search method for vertex enumeration was implemented as Irs [0
7). From the outset it was realized that reverse search was eminently suitable
for parallelization. Marzetta developed the first parallel reverse search code
using his ZRAM parallelization platform [I748], and implemented the first
parallel vertex enumeration code, prs, using this generic reverse search frame-
work. Load balancing is performed using a variant of what is now known as
job stealing. Application codes, such as Irs, were embedded into ZRAM itself
leading to problems of maintenance as the underlying codes evolved. Although
prs is no longer distributed and was based on a now obsolete version of Irs, it
clearly showed the potential for large speedups of reverse search algorithms.
Some limited experimental results for vertex enumeration are given in [17] and
these are discussed in Section

The Irs code is rather complex and has been under development for over
twenty years incorporating a multitude of different functions. It has been used
extensively and its basic functionality is very stable. Directly adding paral-
lelization code to such legacy software is extremely delicate and can easily
produce bugs that are difficult to find. A high level wrapper avoids this prob-
lem by implementing the parallelization as a separate layer with very few
changes to Irs itself. This allows the independent development of both paral-
lelization ideas and basic improvements in the underlying code, both of which
stay up to date. In return for this flexibility there are certain overheads that
we discuss later. However, the focus on Irs and reverse search minimizes the
number of modifications required compared to using a general framework like
ZRAM, and also allows the use of a load balancing technique that is both
simple and efficient for such codes.

The concept of a high level wrapper along these lines was tested by a
shell script, tlrs, developed by White in 2009. Here the parallelization was
achieved by scheduling independent Irs processes for subtrees via the shell.
Although good speedups were obtained, several limitations of this approach
materialized as the number of processors available increased. In particular job
control becomes a major issue: there is no single controlling process.

To overcome these limitations the first author and Roumanis developed
plrs [I3]. This code is a C++ wrapper that compiles in the original Irslib
library essentially maintaining the integrity of the underlying Irs code. The
parallelization was achieved by multithreading using the Boost library and
was designed to run on shared memory machines with little user interaction.
Experience with the plrs code showed good speedups with up to about 16
cores, then reduced performance after that. The goal of mplrs was to solve
this load balancing problem and to move to a distributed environment which
could contain hundreds or thousands of processors.

The differences between mplrs and plrs are described in Section While
prs is able to run on distributed systems using the MPI layer in ZRAM, there are
many differences between prs and mplrs. In particular, prs uses a very different
strategy for load balancing where splitting work is distinct from performing
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work, splitting is computationally expensive, and is targeted at cases with
comparatively regular search trees (see Section 6.3.2 of [48]). This is because
the node descriptions are quite large (see Section 4.3.1 of [48]), and so it tries
to minimize the number of subproblems stored in memory. mplrs uses much
smaller node descriptions (the cobasis) and a very different strategy for load
balancing, where splitting and performing work are not distinct. This budgeted
tree search results in the much better scaling and performance of mplrs. Many
other differences between prs and mplrs are due to the age of prs and the fact
that it is no longer available or maintained.

2.2 Other parallel codes

The reverse search framework in ZRAM was also used to implement a parallel
code for certain quadratic maximization problems [28]. In a separate project,
Weibel [58] developed a parallel reverse search code to compute Minkowski
sums. This C++ implementation runs on shared memory machines and he
obtains linear speedups with up to 8 processors, the largest number reported.

ZRAM is a general-purpose framework that is able to handle a number
of other applications, such as branch-and-bound and backtracking, for which
there are by now a large number of competing frameworks. Recent papers
by Crainic et al. [25], McCreesh et al. [50] and Herrera et al. [38] describe
over a dozen such systems. While branch-and-bound may seem similar to re-
verse search enumeration, there are fundamental differences. In enumeration
it is required to explore the entire tree whereas in branch-and-bound the goal
is to explore as little of the tree as possible until a desired node is found.
The bounding step removes subtrees from consideration and this step depends
critically on what has already been discovered. Hence the order of traversal is
crucial and the number of nodes evaluated varies dramatically depending on
this order. Sharing of information is critical to the success of parallelization.
Similar complications exist in parallel SAT solving [37] and parallel game tree
search [41]. These issues do not occur in reverse search enumeration, and so a
much lighter wrapper is possible.

Relevant to the heaviness of the wrapper and amount of programming ef-
fort required, a comparison of three frameworks is given in [38]. The first,
Bob++ [27], is a high level abstract framework, similar in nature to ZRAM, on
top of which the application sits. This framework provides parallelization with
relatively little programming effort on the application side and can run on a
distributed network. The second, Threading Building Blocks (TBB) [54], is a
lower level interface providing more control but also considerably more pro-
gramming effort. It runs on a shared memory machine. The third framework
is the Pthread model [20] in which parallelization is deep in the application
layer and migration of threads is done by the operating system. It also runs
on a shared memory machine. All of these methods use job stealing for load
balancing [I16]. In [38] these three approaches are applied to a global optimiza-
tion algorithm. They are compared on a rather small setup of 16 processors,
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perhaps due to the shared memory limitation of the last two approaches. The
authors found that Bob++ achieved a disappointing speedup of about 3 times,
considerably slower than the other two approaches which achieved near linear
speedup. Other frameworks include CHiPPS [60] for parallel tree search and
MW [32], which uses the HT Condor framework. MW can be used to parallelize
existing applications using the master-worker paradigm; one such application
was to quadratic assignment problems [2].

Computational tasks that can be divided into subproblems which can be
solved independently with no communication are often called embarrassingly
parallel [59]. Many such problems involve processing an enormous amount of
data that can easily be divided, one prominent example being the SETI@Qhome
project [I]. A recent approach to parallel constraint solvers [47] (where the in-
put and output are comparatively small) uses this as inspiration and initially
creates a large number of subproblems that are then solved in parallel. Other
approaches to creating an initial (hopefully balanced) decomposition of the
input include cube-and-conquer [39], which uses a lookahead SAT solver to
split the original problem into many subproblems that are solved in paral-
lel by CDCL solvers, and applying machine learning techniques to parallel
AND/OR branch-and-bound [53]. Self-splitting [29] is a technique for min-
imizing communication when the subproblem descriptions are large. There,
each worker performs an identical split of the original problem and then fol-
lows some deterministic rule to decide which portions belong to it. This is not
particularly appropriate in our case, where subproblem descriptions are small
and the major concern is that subproblem difficulty is highly unbalanced.

Another way to deal with the problem posed by subproblems of varying
difficulties is dynamic load balancing, where one can split difficult subproblems
during the computation. Work stealing [16] is one well-known approach where
free workers can steal portions of work from busy workers.

Parallel search has a long history and many applications [34]. Topics related
to this paper include load balancing techniques [45)46] and estimating the
difficulty of subproblems. The general idea of developing a lightweight parallel
wrapper and reusing sequential code with minimal changes has been applied in
many areas, including mixed integer programming [56] and SAT solving [15].

Parallel programming is almost as old as programming itself and there is a
wealth of literature on the subject which we can not cover here. For a modern
introduction the reader is referred to Mattson et al. [49]. Generally, much at-
tention is given to machine architecture, communications between processes,
data sharing, synchronization, interrupts, load balancing and so on. This is
essential knowledge for building and implementing a parallel algorithm from
scratch. However our aim was essentially different. In return for some com-
putational overhead, we would like to use existing sequential code with only
minor modifications. In particular, this eliminates the need for considering
most of these topics. The main issue that remains is load balancing, a topic
we discuss in detail throughout the paper.
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3 Background
3.1 The vertex/facet enumeration problem

The vertex enumeration problem is described as follows. Given an m x d matrix
A = (a;;) and an m dimensional vector b, a convexr polyhedron, or simply
polyhedron, P is defined as:

P={zecR%:b+ Az > 0}. (1)

This description of a polyhedron is known as an H-representation. A polytope
is a bounded polyhedron. For simplicity in this article we will assume that
the input data A,b defines a polytope which has dimension d, i.e. it is full
dimensional. For this it is necessary that m > d. A point x € P is a vertex of
P if and only if it is the unique solution to a subset of d inequalities from
solved as equations. Such a subset of inequalities is called a basis.

The vertex enumeration problem is to output all vertices of a polytope P.
This list of vertices gives us a V-representation of P. The reverse transfor-
mation, called the facet enumeration problem, takes a V-representation and
computes its H-representation. The two problems are computationally equiv-
alent via polarity. A polytope is called simple if each vertex is described by a
single basis and simplicial if each facet contains exactly d vertices. A vertex
enumeration problem for a simple polytope is called non-degenerate as is a
facet enumeration problem for a simplicial polytope. Other such problems are
called degenerate. Since the two problems are equivalent, we will consider only
the vertex enumeration problem in what follows.

One of the features of these types of enumeration problems is that the
output size varies widely for given parameters m and d. It is known that
up to scaling by constants, each full dimensional polytope has a unique non-
redundant H and V representation. For the bounds given next we assume such
representations. For positive integers m > d let

F(m, d) = (m - L‘TJ) N (m - LTJ) . @)

m—d m—d

McMullen’s Upper Bound Theorem (see, e.g., [61]) states that for a polytope
whose H-representation has parameters m > d the maximum number of ver-
tices it can have is f(m,d). This bound is tight and is achieved by the class of
cyclic polytopes. By inverting the formula and using polarity we can get lower
bounds on the number of vertices of a polytope. We have:

min{t :m < f(t,d)} < [V] < f(m,d). 3)

The first inequality follows because a polytope with fewer than this number
of vertices must have less than m facets. For example, suppose m = 40 and
d = 20. Then we have 22 < |V| < 40, 060, 020.

Pivoting methods compute the bases of a polytope and this number can be
much larger than the upper bound in . However, as described in the next
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subsection, Irs uses lexicographic pivoting which is equivalent to a symbolic
perturbation of the polytope into a simple polytope. Hence f(m,d) is a tight
upper bound on the number of bases computed. Since we only require each
vertex once, highly degenerate polytopes will cause large overhead for pivoting
methods.

3.2 Reverse search and Irs

Reverse search is a technique for generating large, relatively unstructured, sets
of discrete objects. We give an outline of the method here and refer the reader
to [IOJII] for further details. In its most basic form, reverse search can be
viewed as the traversal of a spanning tree, called the reverse search tree T,
of a graph G = (V, E) whose nodes are the objects to be generated. Edges
in the graph are specified by an adjacency oracle, and the subset of edges of
the reverse search tree are determined by an auxiliary function, which can be
thought of as a local search function f for an optimization problem defined on
the set of objects to be generated. One vertex, v*, is designated as the target
vertex. For every other vertex v € V, repeated application of f must generate
a path in G from v to v*. The set of these paths defines the reverse search tree
T, which has root v*.

A reverse search is initiated at v*, and only edges of the reverse search tree
are traversed. When a node is visited the corresponding object is output. Since
there is no possibility of visiting a node by different paths, the nodes are not
stored. Backtracking can be performed in the standard way using a stack, but
this is not required as the local search function can be used for this purpose.
This implies two critical features that are essential for effective parallelization.
Firstly, it is not necessary to store more than one node of the tree at any given
time and no database is required for visited nodes. Secondly, it is possible to
restart the enumeration process from any given node in the tree using only a
description of this one node. This contrasts with standard depth first search
algorithms for which restart is only possible with a complete database of visited
nodes as well as the backtrack stack to the root of the search tree.

In the basic setting described here a few properties are required. Firstly, the
underlying graph G must be connected and an upper bound on the maximum
vertex degree, A, must be known. The performance of the method depends
on G having A as low as possible. The adjacency oracle must be capable
of generating the adjacent vertices of some given vertex v sequentially and
without repetition. This is done by specifying a function Adj(v, j), where v is
a vertex of G and j = 1,2,..., A. Each value of Adj(v,j) is either a vertex
adjacent to v or null. Each vertex adjacent to v appears precisely once as j
ranges over its possible values. For each vertex v # v* the local search function
f () returns the tuple (u,j) where v = Adj(u,7) such that w is v’s parent in
T. Pseudocode is given in Algorithm [I| Note that the vertices are output as
a continuous stream. For convenience later, we do not output the root vertex
v* in the pseudocode shown.
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Algorithm 1 Generic Reverse Search
1: procedure RrS(v*, A, Adj, f)

2: v v* 740 depth+ 0

3: repeat

4: while j < A do

5: jej+1

6: if f(Adj(v,7)) = v then > forward step
7 v < Adj(v, j)

8: 7«0

9: depth < depth + 1

10: output v

11: end if

12: end while

13: if depth > 0 then > backtrack step
14; (v,) < F(v)

15: depth < depth — 1

16: end if

17: until depth =0 and j = A
18: end procedure

To apply reverse search to vertex enumeration we first make use of dic-
tionaries, as is done for the simplex method of linear programming. To get a
dictionary for we add one new nonnegative variable for each inequality:

d

xd+i:bi+g a;jTj, Tati >0 1=1,2,...,m.
Jj=1

These new variables are called slack variables and the original variables are
called decision variables.

In order to have any vertex at all we must have m > d, and normally m
is significantly larger than d, allowing us to solve the equations for various
sets of variables on the left hand side. The variables on the left hand side
of a dictionary are called basic, and those on the right hand side are called
non-basic or, equivalently, co-basic. We use the notation B = {i : x; is basic}
and N = {j : z; is co-basic}.

A pivot interchanges one index from B and N and solves the equations
for the new basic variables. A basic solution from a dictionary is obtained by
setting x; = 0 for all j € N. It is a basic feasible solution (BFS) if x; > 0
for every slack variable x;. A dictionary is called degenerate if it has a slack
basic variable 2; = 0. As is well known, each BFS defines a vertex of P and
each vertex of P can be represented as one or more (in the case of degeneracy)
BFSs.

Next we define the relevant graph G = (V, E) to be used in Algorithm
Each node in V' corresponds to a BFS and is labelled with the cobasic set
N. Each edge in E corresponds to a pivot between two BFSs. Formally we
may define the adjacency oracle as follows. Let B and N be index sets for the
current dictionary. For ¢ € B and j € N

. . [ N\ {j}uU{i} if this gives a feasible dictionary
Adj(N,3,7) = {@ otherwise .
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A target v* for the reverse search is found by solving a linear program over
this dictionary with any objective function. A new objective function is then
chosen so that the optimum dictionary is unique and represents v*. Irs uses
Bland’s least subscript rule for selecting the variable which enters the basis and
a lexicographic ratio test to select the leaving variable. The lexicographic rule
simulates a simple polytope which greatly reduces the number of bases to be
considered. We initiate the reverse search from the unique optimum dictionary.
For more details see the technical description at [6]. Irs is an implementation of
Algorithm[I)in exact rational arithmetic using Adj, f, and v* as just described.

3.3 Parallelization and plrs

The development of mplrs started from our experiences with plrs, with the
goal of scaling past the limits of other vertex enumeration codes while using
the existing Irs code with only minor modifications. The details of plrs are
described in [13]; here we give a generic description of the parallelization which
is by nature somewhat oversimplified. We will use as an example the tree shown
in Figure [I] which shows the first two layers of the reverse search tree for the
problem mit, an 8-dimensional polytope with 729 facets that will be described
in Section [6.1} The weight on each node is the number of nodes in the subtree
that it roots. The root of the tree is in the centre and its weight shows that
the tree contains 1375608 nodes, the number of cobases generated by Irs. At
depth 2 there are 35 nodes but of these, just the four underlined nodes contain
collectively about 58% of the total number of tree nodes.

The method implemented in plrs proceeds in three phases. In the first phase,
sometimes called ramp-up in the parallel processing literature, we generate the
reverse search tree 1" down to a fixed depth, init_depth, reporting all nodes
to the output stream. In addition, the nodes of the tree with depth equal to
init_depth which are not leaves of T are stored in a list L.

In the second phase we schedule subtree enumeration for nodes in L using a
user-specified parameter maz_threads to limit the number of parallel processes.
For subtree enumeration we use Irs with a slight modification to its earlier
described restart feature. Normally, in a restart, Irs starts at a given restart
node at its given depth and computes all remaining nodes in the tree T. The
simple modification is to supply a depth of zero with the restart node so that
the search terminates when trying to backtrack from this node.

When the list L becomes empty we move to Phase 3, sometimes called
ramp-down, in which the threads terminate one by one until there are no more
running and the procedure terminates. In both Phase 2 and Phase 3 we make
use of a collection process which concatenates the output from the threads
into a single output stream. It is clear that the only interaction between the
parallel threads is the common output collection process. The only signalling
required is when a thread initiates or terminates a subtree enumeration.

Let us return to the example in Figure[I] Suppose we set init_depth = 2 and
maz_threads = 12. A total of 35 nodes are found at this depth. 34 are stored



mplrs: A scalable parallel vertex/facet enumeration code 11
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Fig. 1: Number of nodes in subtrees at depth 2 for mit

in L and the other, being a leaf, is ignored. The first 12 nodes are removed
from L and scheduled on the 12 threads. Each time a subtree is completely
enumerated the associated thread receives another node from L and starts
again. When L is empty the thread is idle until the entire job terminates. To
visualize the process refer to Figure [2| In this case we have set init_depth = 3
to obtain a larger L. The vertical axis shows thread usage and the horizontal
axis shows time. Phase 1 is so short - less than one second - that it does
not appear. Phase 2 lasts about 50 seconds, when all 12 threads are busy.
Phase 3 lasts the remaining 70 seconds as more and more threads become
idle. If we add more cores, only Phase 2 will profit. Even with very many
cores the running time will not drop below 70 seconds and so this technique
does not scale well. In comparing Figures [I] and [2] we see that the few large
subtrees create an undesirably long Phase 3. Going to a deeper initial depth
helps to some extent, but this eventually creates an extremely long list L with
subsequent increase in overhead (see [I3] for more details). Nevertheless plrs
performs very well with up to about 32 parallel threads, as we will see in
Section

In analyzing this method we observe that in Phase 1 there is no paral-
lelization, in Phase 2 all available cores are used, and in Phase 3 the level of
parallelization drops monotonically as threads terminate. Looking at the over-
head compared with Irs we see that this almost entirely consists of the amount
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Fig. 2: Processor usage by plrs on problem mit on a 12 core machine,
init_depth = 3

of time required to restart the reverse search process. In this case it requires
the time to pivot the input matrix to a given cobasis, which is not negligible.
However a potentially greater cost occurs when L is empty and threads are
idle. As the number of available processors increase this cost goes up, but the
overhead of restarting remains the same, for given fixed init_depth. This leads
to conflicting issues in setting the critical init_depth parameter. A larger value
implies that:

— only a single thread is working for a longer time,
— the list L will typically be larger requiring more overhead in restarts but,
— the time spent in Phase 3 will typically be reduced.

The success in parallelization clearly depends on the structure of the tree
T. In the worst case it is a path and no parallelization occurs in Phase 2.
Therefore in the worst case we have no improvement over Irs. In the best case
the tree is balanced so that the list L can be short reducing overhead and
all threads terminate at more or less the same time. Success therefore heavily
depends on the structure of the underlying enumeration problem.

4 Load Balancing Strategies

plrs generates subproblems in an initial phase based on a user supplied init_depth
parameter. This tends to perform best on balanced trees which, in practice,
seem rather rare. In plrs, workers (except the initial Phase 1 worker) always
finish the subproblem that they are assigned. However, there is no guaran-
tee that subproblems have similar sizes and as we have seen they can differ
dramatically. As we saw earlier, this can lead to a major loss of parallelism
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after the queue L becomes empty. Load balancing is the efficient distribution
of work among a number of processors and is a well-studied area of parallel
computation, see for example Shirazi et al. [57]. The constraints of our par-
allelization approach described in the Introduction, such as no interrupts or
communication between subprocesses, greatly limits the methods available.
In this section we discuss various strategies we tried in developing mplrs. In
particular, we focus on:

estimating the size of subproblems to improve scheduling and create reasonably-
sized problems,

dynamic creation of subproblems, where we can split subproblems at any
time instead of only during the initial phase,

using budgets for workers, who return after exploring a budgeted number

of nodes adding unfinished subproblems to L.

4.1 Subtree Estimation

A glance at Figure [I] shows the problem with using a fixed initial depth to
generate the subtrees for L: the tree mass is concentrated on very few nodes.
Of course, increasing init_depth would decrease the size of the large subtrees.
However, the subtrees can still be unbalanced at the new depth and this also
increases the number of jobs in L, increasing the restart overhead. Since Irs
has the capability to estimate subtree size we tried two approaches using that:
priority scheduling and iterative deepening.

Estimation is possible for vertex enumeration by reverse search using Hall-

Knuth estimation [36]. From any node a child can be chosen at random and
by continuing in the same way a random path to a leaf is constructed. This
leads to an unbiased estimate of the subtree size from the initial node. Various
methods lead to lower variance, see [§].

The first use of estimation we tried was in priority scheduling. Although

finding a schedule that minimizes the total time to complete all work is NP-
hard, good heuristics are available. One such heuristic is the list decreasing
heuristic, analyzed by Graham [33], that schedules the jobs in decreasing order

by

their execution time. Referring again to Figure [1| we see that we should

schedule those four heaviest subtrees at the start of Phase 2. Since we do
not have the exact values of the subtree sizes we decided to use the estimation
function as a proxy. We then scheduled jobs from L in a list decreasing manner
by estimated tree size.

A second idea we tried was iterative deepening. We start by setting a

threshold value, say k, for maximum estimated subtree size. Once a node at
init _depth is encountered an estimate of its subtree size is made. If this exceeds
k then we continue to the next layer of the tree and estimate the subtree sizes
again, repeatedly going deeper in the tree for subtrees whose estimates exceed
k. In this way all nodes returned to L will have estimated subtree sizes smaller
than k.
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The results from these two approaches were mixed. There are two negative
points. One is that Hall-Knuth estimates have very high variance, and the true
value tends to be larger than the estimate in probability. So very large subtrees
receiving small estimates would not be scheduled first in priority scheduling
and would not be broken up by iterative deepening. Secondly, the nodes visited
during the random probes represent overhead, as these nodes will all be visited
again later. In order to improve the quality of the estimate a large number of
probes need to be made, increasing this overhead.

Nevertheless this seems to be an interesting area of research. Newer more
reliable estimation techniques that do not result in much overhead, such as
the on-the-fly methods of [24] and [43], may greatly improve the effectiveness
of these approaches.

4.2 Dynamic Creation of Subproblems

As we saw in Section plrs creates new subproblems only during the ini-
tial phase. We can think in terms of one boss, who creates subproblems in
Phase 1, and a set of workers who start work in Phase 2 and each works on
a single subproblem until it is completed. However, there is no reason why an
individual worker cannot send some parts of its search tree back to L without
exploring them.

A simple example of this is to implement a skip parameter. This is set
at some integer value ¢ > 1 and subtrees rooted at every t-th node explored
are sent back to L without exploration. The boss can set the skip parameter
dynamically when allocating work from L. If L is getting dangerously small,
then a small value is set. Conversely if L is very large an extremely large value
is set.

We implemented this idea but did not get good results. When the skip
parameter is set then all subtrees are split into smaller pieces, even the small
subtrees, which is undesirable. When skip is too small, the list L quickly be-
comes unmanageably large with very high overhead. It seemed hard for the
boss to control the size of L by varying the size of the parameter, due to the
delay incurred before the new parameter propagated to all the workers.

4.3 Budgeted Subproblems

The final and most successful approach involved limiting the amount of work
a worker could do before being required to quit. Each worker is given a bud-
get which is the maximum number of nodes that can be visited. Once this
budget is exceeded the worker backtracks to the root of its subtree returning
all unfinished subproblems. These consist of all unexplored children of nodes
in the backtrack path. This has several advantages. Firstly, if the subtree has
size less than the budget (typically 5000 nodes in practice) then the entire
subtree is evaluated without additional creation of overhead. Secondly, each
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large subtree automatically gets split up. By including all unexplored subtrees
back to the root a variable number of jobs will be added to L. A giant subtree
will be split up many times. For example, the subtree with 308626 nodes in
Figure [1] will be split over 600 times, providing work for idle workers. We can
also change the budget dynamically to obtain different effects. If the budget is
set to be small we immediately create many new jobs for L. If L grows large
we can increase the budget: since most subtrees will be below the threshold
the budget is not used up and new jobs are not created.

Budgeting can be introduced to the generic reverse search procedure of
Algorithm [1] as follows. When calling the reverse search procedure we now
supply three additional parameters:

— start_vertex is the vertex from which the reverse search should be initiated
and replaces v*,

— maz_depth is the depth at which forward steps are terminated,

— max_cobases is the number of nodes to generate before terminating and
reporting unexplored subtrees.

Both maz_depth and max_cobases are assumed to be positive, for otherwise
there is no work to do. The modified algorithm is shown in Algorithm

Algorithm 2 Budgeted Reverse Search

1: procedure BRs(start_verter, A, Adj, f, maz_depth, maz_cobases)

2: j 0 v < start_vertex count <~ 0 depth <0
3: repeat
4 unexplored + false
5: while j < A and unezplored = false do
6: j+—j+1
7 if f(Adj(v,j)) =v then > forward step
8: v+ Adj(v, 7)
9: 7«0
10: count < count + 1
11: depth < depth + 1
12: if count > maz_cobases or depth = maz_depth then > budget is
exhausted
13: unezxplored < true
14: end if
15: put_output(v, unexplored)
16: end if
17: end while
18: if depth > 0 then > backtrack step
19: (v,4) < F(v)
20: depth < depth — 1
21: end if

22: until depth =0 and j = A
23: end procedure

Comparing Algorithm [l and Algorithm [2] we note several changes. Firstly,
an integer variable count is introduced to keep track of how many tree nodes
have been generated. Secondly, a flag unezplored is introduced to distinguish
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the tree nodes which have not been explored and which are to be placed on
L. Tt is initialized as false on line 4. The flag is set to true in line 13 if either
the budget of max_cobases has been exhausted or a depth of maz_depth has
been reached. In any case, each node encountered on a forward step is output
via the routine put_output on line 15. In single-processor mode the output
is simply sent to the output file with a flag added to unexplored nodes. In
multi-processor mode, the output is synchronized and unexplored nodes are
returned to L (cf. Section [f)).

Backtracking is as in Algorithm[I] After each backtrack step the unezplored
flag is set to false in line 4. If the budget constraint has been exhausted then
unezplored will again be set to true in line 13 after the first forward step. In
this way all unexplored siblings of nodes on the backtrack path to the root
are flagged and placed on L. If the budget is not yet exhausted, forward steps
continue until the budget is exhausted, max_depth is reached, or we reach
a leaf.

To output all nodes in the subtree of T rooted at v we set start_verter = v,
maz_cobases = +oo and mazr_depth = +oo. So if v = v* this reduces to
Algorithm [I] For budgeted subtree enumeration we set maz_cobases to be
the worker’s budget. To initialize the parallelization process we will generate
the tree T" down to a a small fixed depth with a small budget constraint in
order to generate a lot of subtrees. We then increase the budget constraint and
remove the depth constraint so that most workers will finish the tree they are
assigned without returning any new subproblems for L. Since subproblems are
dynamically created, it is not necessary to have a long Phase 1. By default,
mplrs logs the time spent in Phase 1 and this time was insignificant in all runs
considered in this paper. The details are given in Section [5.1

5 Implementation of mplrs

The primary goals of mplrs were to move beyond single, shared-memory sys-
tems to clusters and improve load balancing when a large number of cores is
available. The implementation uses MPI, and starts a user-specified number of
processes on the cluster. One of these processes becomes the master, another
becomes the consumer, and the remaining processes are workers.

The master process is responsible for distributing the input file and parametrized
subproblems to the workers, informing the other processes to exit at the appro-
priate time, and handling checkpointing. The consumer receives output from
the workers and produces the output file. The workers receive parametrized
subproblems from the master, run the Irs code, send output to the consumer,
and return unfinished subproblems to the master if the budget has expired.

5.1 Master Process

The master process begins by sending the input to all workers, which may not
have a shared file system. In mplrs, Adj and f are defined as in Section [3.2]
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and so it suffices to send the input polyhedron. Pseudocode for the master is
given in Algorithm [3]

Algorithm 3 Master process

1: procedure MPRS(start_vertex, A, Adj, f, init_depth, max_depth, maz_cobases, Imin,
Imaz, scale, num_workers)

2: Send (A, Adj, f) to each worker

3: Create empty list L

4: size <— num_workers + 2

5: Send (start-vertez, init-depth, maz_cobases) to worker 1
6: Mark 1 as working

7 while L is not empty or some worker is marked as working do
8: while L is not empty and some worker not marked as working do
9: if |L| < size - Imin then

10: maxd < maz_depth

11: else

12: maxd <— 0o

13: end if

14: if |L| > size - Imaz then

15: mazc < scale - mazx_cobases

16: else

17: maxc <— max_cobases

18: end if

19: Remove next element start from L

20: Send (start, mazd, mazc) to first free worker @
21: Mark i as working

22: end while

23: for each marked worker ¢ do

24: Check for new message unfinished from ¢

25: if incoming message unfinished from i then

26: Join list unfinished to L

27: Unmark i as working

28: end if

29: end for
30: end while
31: Send terminate to all processes

32: end procedure

Since we begin from a single start_vertex, the master chooses an initial
worker and sends it the initial subproblem. We cannot yet proceed in parallel,
so the master uses user-specified (or very small default) initial parameters
init_depth and max_cobases to ensure that this worker will return (hopefully
many) unfinished subproblems quickly. The master then executes its main
loop, which it continues until no workers are running and the master has
no unfinished subproblems. Once the main loop ends, the master informs all
processes to finish. The main loop performs the following tasks:

— if there is a free worker and the master has a subproblem, subproblems are
sent to workers;

— we check if any workers are finished, mark them as free and receive their
unfinished subproblems.
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Using reasonable parameters is critical to achieving good parallelization.
As described in Section [£:3] this is done dynamically by observing the size
of L. We use the parameters Imin, Imaz and scale. Initially, to create a rea-
sonable size list L, we set maz_depth = 2 and max_cobases = 50. Therefore
the initial worker will generate subtrees at depth 2 until 50 nodes have been
visited and then backtrack. Additional workers are given the same aggressive
parameters until L grows larger than Imax times the number of processors. We
now multiply the budget by scale and remove the maz_depth constraint. Cur-
rently scale = 100 so workers will not generate any new subproblems unless
their tree has at least 5000 nodes. If the length of L drops below this bound
we return to the earlier value of mazx_cobases = 50 and if it drops below Imin
times the size of L we reinstate the maxz_depth constraint. The current default
is to set Imin = lmaz = 3. In Section [5.4] we show an example of how the
length of L typically behaves with these parameter settings.

5.2 Workers

The worker processes are simpler — they receive the problem at startup, and
then repeat their main loop: receive a parametrized subproblem from the mas-
ter, work on it subject to the parameters, send the output to the consumer,
and send unfinished subproblems to the master if the budget is exhausted.

Algorithm 4 Worker process

1: procedure WORKER

2: Receive (A, Adj, f) from master
3 while true do

4 Wait for message from master

5: if message is terminate then

6: Exit

7 end if

8: Receive (start_vertex, maz_depth, maz_cobases)

9: Call BRS(start_vertex, A, Adj, f, maz_depth, maz_cobases)
10: Send list of unfinished vertices to master

11: Send output list to consumer

12: end while

13: end procedure

5.3 Consumer Process

The consumer process in mplrs is the simplest. The workers send output to
the consumer in exactly the format it should be output (i.e., this formatting
is done in parallel). The consumer simply sends it to an output file, or prints
it if desired. By synchronizing output to a single destination, the consumer
delivers a continuous output stream to the user in the same way as Irs does.
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Algorithm 5 Consumer process

1: procedure CONSUMER
2: while true do
Wait for incoming message
if message is terminate then
Exit
end if
Output this message
end while
end procedure

5.4 Histograms

There are additional features supported by mplrs that are minor additions to
Algorithms [BH5} We introduce histograms in this subsection, before proceeding
to checkpoints in Section [5.5]

When desired, mplrs can provide a variety of information in a histogram
file. Periodically, the master process adds a line to this file, containing the
following information:

— real time in seconds since execution began,
— the number of workers marked as working,
— the current size of L (number of subproblems the master has).

We use this histogram file with gnuplot to produce plots that help un-
derstand how much parallelization is achieved over time, which helps when
tuning parameters. Examples of the resulting output are shown in Figure [3
The problem, mit71, is a degenerate 60-dimensional polytope with 71 facets
and is described in Section [6.11

It is useful to compare Figure (a) to Figure |2[ showing a typical plrs run.
The long Phase 3 ramp-down time of plrs no longer appears. This is due
to the budget constraint automatically breaking up large subtrees and the
master redistributing this new work to other workers. The fact that workers are
generally not idle is necessary for efficient parallelization, but it is not sufficient:
if the job queue is very large the overhead required to start jobs will dominate
and performance is lost. To get information on this the second histogram,
Figure b), is of use. This plot gives the size of L, the number of subproblems
held by the master. This histogram is useful to visualize the overall progress
of the run in real time to see if the parameters are reasonable. In mplrs, L is
implemented as a stack. When |L| falls to a value for the first time, a new
(relatively high in the tree) subproblem is examined for the first time. If this
new subproblem happens to be large, the size of L can grow dramatically due to
the budget being exhausted by the assigned worker. The choice of parameters
greatly affects the rate at which new subproblems are created.

A third type of histogram, subtree size, can also be produced as shown
in Figure c). This gives the frequency of the sizes of all subtrees whose
roots were stored in the list L, which in this case contained a total of 116,491
subtree roots. We see that for this problem the vast majority of subtrees
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Fig. 3: Histograms for mit71 with 128 processes

are extremely small. The detail of this is shown in Figure d). These small
subtrees could have been enumerated more quickly than their restart cost alone
— if they could have been identified quickly. This is an interesting research
problem. After about 60 nodes the distribution is quite flat until the small
hump occurring at 5000 nodes. This is due to the budget limit of 5000 causing
a worker to terminate. The hump continues slightly past 5000 nodes reflecting
the additional nodes the worker visits on the backtrack path back to the root.
It is interesting that most workers completely finish their subtrees and only
very few actually hit the budget constraint. Histograms such as these may
be of interest for theoretical analysis of the budgeting method. For example,
the shape of the histogram may suggest an appropriate random tree model to
study for this type of problem.

5.5 Checkpointing

An important feature of mplrs is the ability to checkpoint and restart execution
with potentially different parameters or number of processes. This allows, for
example, users to tune parameters over time using the histogram file, without
discarding initial results. It is also very useful for very large jobs if machines
need to be turned off for any reason or if new machines become available.
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Checkpointing is easy to implement in mplrs but to be effective it depends
heavily on the maz_cobases option being set. Workers are never aware of check-
pointing or restarting — as in Algorithm [4] they simply use Irs to solve given
subproblems until their budget runs out. When the master wishes to check-
point, it ceases distribution of new subproblems and tells workers to terminate.
Once all workers have finished and returned any unfinished subproblems, the
master informs the consumer of a checkpoint. The consumer then sends var-
ious counting statistics to the master, which saves these statistics and L in
a checkpoint file. Note that if maz_cobases is not set then each worker must
completely finish the subtree assigned, which may take a very long time.

When restarting from a checkpoint file, the master reloads L from the
file instead of distributing the initial subproblem. It informs the consumer of
the counting statistics and then proceeds normally. Previous output is not
re-examined: mplrs assumes that the checkpoint file is correct.

6 Performance

We describe here some experimental results for the three codes described in
this paper and 4 codes based on the double description method: cddr+ [31],
normaliz [52], PORTA [22] and ppl_lcdd [14].

6.1 Experimental Setup

The tests were performed using the following computers:

— mai20: 2x Xeon E5-2690v2 (10-core 3.0GHz), 20 cores, 128GB memory,
3TB hard drive,

— mai32ef: 4x Opteron 6376 (16-core 2.3GHz), 64 cores, 256GB memory,
4TB hard drive,

— mai82abced: 4 nodes, each containing: 2x Opteron 6376 (16-core 2.3GHz),
32GB memory, 500GB hard drive (128 cores in total),

— mai64: 4x Opteron 6272 (16-core 2.1GHz), 64 cores, 64GB memory, 500GB
hard drive,

— mail2: 2x Xeon X5650 (6-core 2.66GHz), 12 cores, 24GB memory, 60GB
hard drive,

— mai24: 2x Opteron 6238 (12-core 2.6GHz), 24 cores, 16GB memory, 600GB
RAID5 array,

— Tsubame2.5: supercomputer located at Tokyo Institute of Technology, nodes
containing: 2x Xeon X5670 (6-core 2.93GHz), 12 cores, 54GB memory, large
file systems, dual-rail QDR Infiniband.

The first six machines total 312 cores, are located at Kyoto University and
connected with gigabit ethernet. They were purchased between 2011-15 for a
combined total of 3.9 million yen ($33,200).
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The polytopes we tested are described in Table [I] and range from non-
degenerate to highly degenerate polyhedra. The input for a vertex enumer-
ation problem, as defined in , is given as an m by n array of integers or
rationals, where n = d+ 1. For i = 1,...,m, row ¢ consists of b; followed by
the d coefficients of the i-th row of A. For a d-dimensional facet enumeration
problem, m is the number of vertices. Each row has n = d + 1 columns each
consisting of a 1 (a 0 would represent an extreme ray) followed by the d coordi-
nates of the vertex. Table [I] includes the results of an Irs run on each polytope
as Irs gives the number of bases in a symbolic perturbation of the polytope.
We include a column labelled degeneracy which is the number of bases divided
by the number of vertices (or facets) output, rounded to the nearest integer.
We have sorted the table in order of increasing degeneracy. The horizontal line
separates the non-degenerate from the degenerate problems. The correspond-
ing input files are available by following the Download link at [6]. Note that the
input sizes are small, roughly comparable and except for ¢p6, much smaller
than the output sizes. Five of the problems were previously used in [13]:

— ¢30, c40: cyclic polytopes which achieve the upper bound . These have
very large integer coefficients, the longest having 23 digits for ¢30 and 33
digits for c40. The polytopes are given by their V-representation. Due to
the internal lifting performed by Irs these appear to have degeneracy less
than 1, but they are in fact non-degenerate simplicial polyhedra.

— perm10: the permutahedron for permutations of length 10, whose vertices
are the 10! permutations of (1,2,3,...,10). It is a 9-dimensional simple
polytope. More generally, for permutations of length p, this polytope is de-
scribed by 2P — 2 facets and one equation and has p! vertices. The variables
all have coefficients 0 or 1.

— mit: a configuration polytope used in materials science, created by G. Gar-
bulsky [2I]. The inequality coefficients are mostly integers in the range
4100 with a few larger values.

— bv7: an extended formulation of the permutahedron based on the Birkhoff-
Von Neumann polytope. It is described by p? inequalities and 3p — 1 equa-
tions in p? 4+ p variables and also has p! vertices. The inequalities are all
0, +1 valued and the equations have single digit integers. The input matrix
is very sparse and the polytope is highly degenerate.

The new problems are:

— km22: the Klee-Minty cube for d = 22 using the formulation given in
Chvatal [23]. It is non-degenerate and the input coefficients use large inte-
gers.

— uf500, vf900: two random polytopes used in Fisikopoulos and Penaranda [30]
chosen from input files kindly provided by the authors. vf500 consists of
500 random points on a 6-dimensional sphere centred at the origin of ra-
dius 100, rounded to rationals. vf900 consists of 900 random points in a
6-dimensional hypercube with vertices having coordinates £100.
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— mit71: a correlation polytope related to problem mit, created by G. Gar-
bulsky [21I]. The coefficients are similar to mit and it is moderately degen-

erate.

— fq48: related to the travelling salesman problem for on 5 cities, created by
F. Quondam (private communication). The coefficients are all 0, +-1 valued

and it is moderately degenerate.

— zfw91: 0,+£1 polytope based on a sensor network that is extremely degen-
erate and has large output size, created by Z.F. Wang [51]. There are three

non-zeroes per row.

— ¢p6: the cut polytope for the complete graph Ky solved in the ‘reverse’
direction: from an H-representation to a V-representation. The output con-
sists of the 32 cut vectors of Kg. It is extremely degenerate, approaching
the lower bound of 19 vertices implied by for these parameters. The
coefficients of the variables are 0, £1, 2.

Name Input Output Irs
H/V m n size V/H size bases secs depth | degeneracy
c30 v 30 16 | 4.7K 341088 73.8M 319770 43 14 1
c40 \% 40 21 | 12K 40060020 | 15.6G 20030010 10002 19 1
km22 H 44 23 | 4.8K 4194304 1.2G 4194304 200 22 1
perm10 H 1023 | 11 29K 3628800 127TM 3628800 2381 45 1
vf500 v 500 7 98K 56669 38M 202985 188 41 4
vf900 \% 900 7 20K 55903 3.9M 264385 97! 45 5
mat71 H 71 61 | 9.5K 3149579 1.1G 57613364 21920 20 18
fa48 H 48 19 | 2.1K 119184 8.7M 7843390 275 24 66
mit H 729 9 21K 4862 196K 1375608 519 101 283
bv7 H 69 57 | 8.1K 5040 867K 84707280 9040 17 16807
zfw91 H 91 38 | 7.1K 2787415 205M 108192898881242 - - 3881478
cpb H 368 16 18K 32 1.6K 4844923002 17746813 153 151403843

1 [30] reports an average of 900 secs for problems like this on an Intel i5-2400 (3.1GHz).

2 Computed by mplrsl v. 6.2 in 2144809 seconds using 289 cores.
3 Computed by Irs v. 6.0.

Table 1: Polytopes tested and Irs times (mai20): *=time > 604800 secs

We tested five sequential codes, including four based on the double descrip-
tion method and one based on pivoting:

— cddr+ (v. 0.77): Double description code developed by K. Fukuda [31].

— normaliz (v. 3.1.3): Hybrid parallel double description code developed by
the Normaliz project [52].

— PORTA (v. 1.4.1): Double description code developed by T. Christof and
A. Lobel [22].

— ppllcdd (v. 1.2): Double description code developed by the Parma Polyhe-

dra Library project [14].
. 6.2): C vertex enumeration code based on reverse search developed
by D. Avis [6].

— Irs (v

All codes were downloaded from the websites cited and installed using instruc-
tions given therein. Of these, Irs and normaliz offer parallelization. For normaliz
this occurs automatically if it is run on a shared memory multicore machine.
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The number of cores used can be controlled with the -x option, which we used
extensively in our tests. For Irs two wrappers have been developed:

— plrs (v. 6.2): C++ wrapper for Irs using the Boost library, developed by G.
Roumanis [I3]. It runs on a single shared memory multicore machine.

— mplrs (v. 6.2): C wrapper for Irs using the MPI library, developed by the
authors.

All of the above codes compute in exact integer arithmetic and with the
exception of PORTA, are compiled with the GMP library for this purpose.
However normaliz also uses hybrid arithmetic, giving a very large speedup
for certain inputs as described in the next section. PORTA can also be run
in either fixed or extended precision. Finally, Irs is also available in a fixed
precision 64-bit version, Irsl, which does no overflow checking. In general this
can give unpredictable results that need independent verification. In practice,
for cases when there is no arithmetic overflow, Irsl runs about 4-6 times faster
than Irs (see Computational Results on the Irs home page [6]). The parallel
version of Irs1 (mplrsl) was used to compute the number of cobases for zfw91,
taking roughly 25 days on 289 cores.

6.2 Sequential Results

Table [2 contains the results obtained by running the five sequential codes on
the problems described in Table [I| Except for ¢p6, the time limit set was one
week (604,800 seconds). Both normaliz and PORTA rejected the problem vf500
due to rational numbers in the input, as indicated by the letter “r” in the table.
For each polytope the first line lists the time in seconds and the second line
the space used in megabytes. A hyphen indicates that the space usage was not
recorded. These data were obtained by using the utility /usr/bin/time -a.

cddr+, Irs, and ppl_lcdd were used with no parameters. normaliz performs
many additional functions, but was set to perform only vertex/facet enumera-
tion. By default, it begins with 64-bit integers and switches to GMP arithmetic
(used by all others except PORTA) in case of overflow. In this case, all work
done with 64-bit arithmetic is discarded. Using option -B, normaliz will do all
computations using GMP. In Table[2] we give times for the default hybrid (H)
and for GMP-only (G) arithmetic. PORTA supports arithmetic using 64-bit
integers or, with the -1 flag, its own extended precision arithmetic package. It
terminates if overflow occurs. We tested both on each problem and found the
extended precision option outperformed the 64-bit option in all cases, so give
only the former in the table.

There can be significant variations in the time of a run. One cause is
dynamic overclocking, where the speed of cores may be increased by 25%—
30% when other cores are idle. Other factors are excessive memory and disk
usage, perhaps by other processes. Due to the one week time limit and long
cpb runs it was not practical to do all runs on otherwise idle machines. Table
[2should be taken as indicative only. The two codes which allow parallelization
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Name Irs cddr+ ppl_lcdd normaliz PORTA
secs/MB || secs/MB secs/MB (H) secs/MB | (G) secs/MB secs/MB
c30 43 2734 844 27 29 **
6 1701 1733 2193 2193 -
c40 10002 oK * 3695 4813 o
12 - - 328819 328846 -
km22 200 156037 374160 1898 1776 **
6 22028 31761 75189 75202 -
perml10 2381 * * 1247 14636 *
99 4904 - 26018 31971 -
vf500 188 4385 321 r r r
69 240 287 - - -
vf900 97 3443 1004 96 131 **
72 148 173 218 194 -
mat71 21920 * 91409 7901 10333 109953
21 - 40538 115983 146226 35939
Ta48 275 138 628 39 287 5183
6 527 983 1427 1820 1141
mit 519 440 21944 203 2364 47697
71 43 915 337 720 5623
bv7 9040 4038 477 165 322 296
12 1351 2073 333 748 457
zfw91 * * * 176606 * 31120
- - - 64668 - 15944
cpb 17746817 || 1463829 || >65700001 142329 15187851 >4925580
62 - 13236 166226 - -

1 Codes used were Irs v. 6.0, ppl_ledd v. 1.1 and normaliz v. 3.0.0. respectively.

Table 2: Sequential times (mai20): *=time > 604800 secs **=abnormal ter-
mination

were primarily run on idle machines as they are used as benchmarks in Section
In particular, all runs of Irs (except zfw91 and cp6 due to their length)
and all runs of normaliz were done on otherwise idle machines. These times
would probably increase by at least the above amounts on a busy machine.
Some times for ¢p6 used earlier versions of the codes, see the table footnotes.
These were not rerun with new versions due to the long running times.

6.3 Parallel Results
We now give results comparing the three parallel codes using default settings.
For mplrs and plrs these are (see User’s guide at [6] for details):

— plrs: -id 4
— mplrs: -id 2, -lmin 3 -maxc 50 -scale 100

Our main measures of performance are the elapsed time taken and the effi-
ciency defined as:

single core running time

efficienc . 4
Y number of cores *x multicore running time )
Multiplying efficiency by the number of cores gives the speedup. Speedups

that scale linearly with the number of cores give constant efficiency.
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Table [3] gives results for low scale parallelization using mai20. We omit
c30 as it runs in under a minute using a single processor with either Irs or
normaliz. We observe that for plrs and normaliz the efficiency goes down as the
number of cores increases as is typical for parallel algorithms. The efficiency of
mplrs, however, goes up. This is due to the fact we assign one core each to the
master and consumer which continually monitor the remaining worker cores
which run Irs. Therefore with 16 cores there are 14 workers which is 7 times
as many workers as when 4 cores are used; hence the improved efficiency. We
discuss this further in Section [6.41

For ¢p6, the Irs times in Tables were obtained using v. 6.0 which has
a smaller backtrack cache size than v. 6.2. Hence the mplrs and plrs speedups
against Irs for ¢p6 in Table [3] are probably somewhat larger than they would
be against Irs v. 6.2. With 4 cores available, plrs usually outperforms mplrs,
they give similar performances with 8 cores, and mplrs is usually faster with
12 or more cores. With 16 cores mplrs gave quite consistent performance with
efficiency in the range .67 to .82, with the exception of km22 with efficiency
.45. The efficiencies obtained by plrs and normaliz show a much higher variance,
in the range .15 to .91 and .06 to .84 respectively.

Table Y] contains results for medium scale parallelization on the 64-core
shared memory machine mai32ef. We omit from the table the five problems
that mplrs could solve in under a minute with 16 cores. Note that these pro-
cessors are considerably slower than mai20 on a per-core basis as can be seen
by comparing the single processor times in Tables [2] and [d] The running time
for Irs on cp6 was estimated by scaling the time for a partial run, making use
of the fact that Irs runs in time proportional to the number of bases computed.
In this case the partial run produced 1807251355 bases in 1285320 seconds. So
we scaled up this running time using the known total number of bases given
in Table Il

With 64 cores, in terms of efficiency, mplrs again gave a very consistent
performance with efficiencies ranging from .42 to .60. This compares to .07 to
.52 for plrs and .02 to .67 for normaliz. We give memory usage for the 64 core
runs for plrs and normaliz. Memory usage by mplrs is not directly measurable
by the time command mentioned above, but is comparable to plrs. On problem
cp6, with 64 cores normaliz is nearly 6 times faster than mplrs but this is due
to the arithmetic package. On a similar run using GMP arithmetic, normaliz
took 182236 seconds which is twice as long as mplrs.

For this scale of parallelization some limited computational results for prs
were given in [I7]. They report in detail on only one problem which has an
input size of m = 134 and n = 11 obtaining efficiencies of .94, .35 and .26,
respectively, when using 10, 100 and 150 processors on a Paragon MP com-
puter. Their problem solves in under a minute with the current version of Irs
so no direct comparison of efficiency with mplrs is possible. The authors also
report solving three problems for the first time including mit71, which com-
pleted in 4.5 days using 64 processors on a Cenju-3. They estimated the single
processor running time for mit71 to be 130 days on a DEC AXP. This machine
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has a very different processor and architecture making it hard to meaningfully
estimate the efficiency of the Cenju-3 run.

Name mplrs  secs/efficiency
96 cores | 128 cores | 160 cores | 192 cores 256 cores | 312 cores
c40 329 247 203 179 134 129
.48 48 .46 44 (.44) (.37)
perm10 115 94 85 96 64 61
.34 .31 .28 .20 (.23) (.20)
mit71 686 516 412 350 231 205
.54 .54 .54 .53 (.60) (-55)
bv7 302 229 184 158 98 88
.49 49 .49 A7 (.57) (.52)
cpb 56700 43455 34457 28634 18657 15995
.63 .62 .63 .63 (.72) (.69)

Table 5: Large scale parallelization (mai cluster)

Table [5| contains results for large scale parallelization on the 312-core mai
cluster of 9 nodes described in Section [6.1} Only mplrs can use all cores in this
heterogeneous environment. The first 5 columns used only the mai32 group
of five nodes which all use the same processor. The efficiencies are therefore
directly comparable and Table [5| is an extension of Table [4] In the final two
columns the machines were scheduled in the order given in Section Since
the processors have different clock speeds we include the efficiency in paren-
theses as it is only a rough estimate.

Finally, Table [6] shows results for very large scale parallelization on the
Tsubame?2.5 supercomputer at the Tokyo Institute of Technology. We ran tests
on the four hardest problems for mplrs.

Name mplrs
1 core 300 cores | 600 cores | 900 cores | 1200 cores
c40 17755 89 49 43 44
1 .66 .60 .46 .34
mit71 36198 147 80 63 49
1 .82 .75 .64 .62
bv7 10594 48 27 27 29
1 73 .65 44 .30
cpb 2400648T 9640 4887 3278 2570
1 .83 .82 .81 .78

1 Estimate based on scaling a partial run on the same machine.

Table 6: Very large scale parallelization: secs/efficiency

The hardest problem solved was cp6, the 6 point cut polytope solved in
the reverse direction, which is extremely degenerate. Its more than 4.8 billion
bases span just 32 vertices! Normally such polytopes would be out of reach for
pivoting algorithms. We observe near linear speedup between 300 and 1200
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cores. Solving in the ‘reverse’ direction is useful for checking the accuracy of
a solution, and is usually extremely time consuming. For example, converting
the V-representation of cp6 to an H-representation takes less than 2 seconds
using any of the three single core codes.

6.4 Analysis of Results

In Figure [4] we plot the efficiencies of the three parallel codes on the four
hardest problems that they could all solve, using a logarithmic scale for the
horizontal axis. Each figure is divided into three parts by two vertical lines.
The left part corresponds to data from Table 3] the centre part to data from
Tables and the right part to data from Table [6] Recall that speedup is
the product of efficiency times the number of cores, and that a horizontal line
in the figure corresponds to speedups that scale linearly with the number of
cores. Overall near linear speedup is observed for mplrs throughout the range
until about 500 cores and, in two cases, until 1200 cores. The efficiencies for
plrs and normaliz generally decrease monotonically to 64 cores, the limit of our
shared memory hardware.

Efficiency vs number of cores (bv7) Efficiency vs number of cores (c40)
1 T T T T T T T T 1
P
08 E 0s }
= =
g 2
S )
& 04 F . & 04 F
mplrs | e mplrs e
02 } plrs  —s— 1 02 F '\\ plrs s T
normaliz normaliz
4 8 16 32 64 128 256 512 1024 4 8 16 32 64 128 256 512 1024
cores cores
(a) Efficiency on bv7 (b) Efficiency on c40
Efficiency vs number of cores (cp6) Efficiency vs number of cores (mit71)
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(c) Efficiency on cp6 (d) Efficiency on mit71

Fig. 4: Efficiency vs number of cores (data from Tables )
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The mplrs plots have more or less the same shape. In the left section the
efficiency increases. This is due to the fact that one core is used as the master
process and one as the collection process. Therefore there are 2 Irs workers
when 4 cores are available which rises to 14 workers with 16 cores, a 7 fold
increase. There is a small drop in efficiency at 16 cores as mai32ef replaces
the more powerful mai20. A similar drop is observable for plrs and normaliz.
A small increase in efficiency is observed at 256 cores as mai20 is used in the
cluster and hosts the master/collector processes. Finally a jump occurs at 300
cores as TsubameZ2.5 replaces the mai cluster and then efficiency decreases.

A decrease in efficiency indicates that overhead has increased. The two
causes of overhead in plrs discussed in Section [3:3] remain in mplrs. One cause
is the cost, for each job taken from L, of pivoting to the LP dictionary corre-
sponding to its restart basis. This is borne by each worker as it receives a new
job from the list L. This cost is directly proportional to the length of the job
list, which is typically longer in mplrs than in plrs. However, this overhead is
shared among all workers and so the cost is mitigated. The amount of overhead
for each job depends on the number of pivots to be made and on the difficulty
of an individual pivot. It is therefore highly problem dependent and this is one
reason why the efficiency varies from problem to problem.

The second cause of overhead is that processors are idle when L becomes
empty. In Section we saw that this was a major problem with plrs as this
overhead increases as more and more processors become idle when L is empty.
This overhead has been largely eliminated in mplrs by our budgeting and
scaling strategy, as L rarely becomes empty. This was illustrated in Figure b).
A third cause of overhead in mplrs are the master and the consumer processes,
as mentioned above. This overhead was not apparent in plrs. It dissipates,
however, as the number of cores increased as we see in Figure

There is additional overhead and bottlenecks in mplrs due to communica-
tion between nodes. For instances such as ¢40 that have large output sizes, the
workers can saturate the interconnect. In Table [5] the times for c¢40 slightly
beat the time needed to transfer the output over the gigabit ethernet intercon-
nect (which is possible because some of the workers are local to the collector
and so some of the output does not need to be transferred). One could trans-
fer the output in a more compact form, but this would involve additional
modifications to the underlying Irs code.

The latency involved in communications is also an issue, since we pay this
cost each time we send a job to a worker. This is especially costly on small
jobs, which can be very common (cf. Figure d)) The lower latency of the
Tsubame interconnect is likely responsible for the jump in efficiency that we
see at 300 cores in Figure 4| (and also the higher bandwidth in the case of ¢40).

Ideally, an algorithm that scales perfectly would have an efficiency of 1
for any number of cores. However our present hardware does not seem able
to achieve this due to a combination of factors. As a test, we ran multiple
copies of Irs in parallel and computed the efficiency, compared to the same
number of sequential single runs, using . Specifically, using the problem
mit we ran, respectively, 16, 32 and 64 copies of Irs in parallel on the 64-core
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mai32ef. The time of a single Irs run on this machine is 892 seconds and the
times of the parallel runs were, respectively, 958, 1060 and 1465 seconds. So
the efficiencies obtained were respectively .93, .84 and .61. One possible cause
for this is that dynamic overclocking (mentioned in Section limits the
maximum efficiency obtainable by the parallel codes. However, leaving some
cores idle in order to obtain higher frequencies on working cores is a technique
worth consideration and so we did not disable dynamic overclocking.
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Fig. 5: The effect of wvarying the budget parameter maz_cobases
(maid2ef ;mai32abed) : mit71, 128 cores, scale = 100

Finally we address the sensitivity of the performance of mplrs to the two
main parameters, maz_cobases and scale. Here the news is encouraging: the
running time is quite stable over a wide range of values for the problems
we have tested. Figure [5| shows the job list evolution and running times
for mit71 using 128 cores on mai32ef and mai32abed with maz_cobases =
1,10, 100, 1000. Recall that Figure b) contains the histogram for the default
setting of maz_cobases = 50, where a total of 120,556 jobs were created and
the running time was 516 seconds. We observe that, apart from the extreme
value max_cobases = 1, the running time is quite stable in the range of 500-
600 seconds, for very different budgets. Note that the number of jobs produced
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does vary a lot. With max_cobases = 1000 the job queue becomes dangerously
near empty at roughly 110 and 200 seconds and for the last 40 seconds. The
other three job queue plots show similar behaviour and max_cobases = 100
wins the race since it generates the fewest extra jobs.

Figure[6] shows the job list evolution and running time with maz_cobases =
50 and varying scale = 1,10, 1000, 10000. Recall Figure b) contains the plot
for scale = 100. With a scale = 1 too many jobs are produced, slowing the
running time by nearly a factor of 3 compared to the default settings. With
scale = 1000 we notice that even though the job queue becomes empty roughly
50 seconds before the end of the run the total running time is nearly the same
as with default settings. The situation is much worse with scale = 10000 as
the job list is essentially empty for almost half of the run. We see that the
number of jobs produced drops rapidly as the scale is increased up to 1000 but
then rises for a scale of 10000. This is due to the fact the budget gets reset
back to max_cobases = 50 whenever the job list becomes nearly empty, which
happens frequently in this case.
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Fig. 6: The effect of varying the scale parameter
(maid2ef ;mai32abcd) : mit71, 128 cores, mazx_cobases = 50

It would be nice to get a formal relationship between job list size and the
budget. This is likely to be very difficult for the vertex enumeration problem
due to vast differences in search tree shapes. However such results are possible
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for random search trees. In recent work Avis and Devroye [9] analyzed this
relationship for very large randomly generated Galton-Watson trees. They
showed that, in probability, the job list size declines as the square root of the
increase in budget.

7 Conclusions

It is natural to ask what is the limit of the scalability of the current mplrs?
Very preliminary experiments with T'subame2.5 using up to 2400 cores indicate
that this limit may be at about 1200 cores. Although budgeting seemed to
produce nicely scaled job queue sizes, there was a limit to the ability of the
single producer (and consumer) to keep up with the workers. While small
modifications can perhaps push this limit somewhat further, this indicates
that a higher level ‘depot’ system may be required, where each depot receives
a part of the job queue and acts as a producer with a subset of the available
cores. This could also help avoid overhead related to the interconnect latency,
since many jobs would be available locally and even remote jobs would be
transferred in blocks. Similarly the output may need to be collected by several
consumers, especially when it is extremely large as in ¢40 and mit71. These
are topics for future research.

Finally one may ask if the parallelization method used here could be used
to obtain similar results for other tree search applications. Indeed we believe
it can. In ongoing work [12] we have prepared a generic framework called mts
that can be used to parallelize legacy reverse search enumeration codes. The
results presented there for two other reverse search applications give compa-
rable speedups to the ones we obtained for mplrs. We are also extending the
range of possible applications by allowing in mts a certain amount of shared
information between workers. This allows the possibility of trying this ap-
proach on branch and bound algorithms, game trees, satisfiability solvers, and
the like.

Acknowledgements We thank Kazuki Yoshizoe for helpful discussions concerning the
MPI library which improved mplrs’ performance.

A Code organization for mplrs

We give a brief outline of the code organization for mplrs v. 6.2. See the Irslib programmer’s
guidtﬂ for additional information on the legacy Irslib code.

To begin, mplrs is built using the following files. Each file has a corresponding header
file which we omit in this description.

— 1rslib.c legacy library code implementing reverse search for vertex/facet enumeration

— Choice of arithmetic packages: (default) 1rsgmp.c using the extended precision GNU MP
library (libgmp), lrsmp.c the Irslib extended precision arithmetic package, or 1rslong.c
using fixed precision arithmetic (used in mplrsl)

3 http://cgm.cs.mcgill.ca/~avis/C/1lrslib/lrslib.html
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— mplrs.c MPI wrapper containing all parallelization code for mplrs

There are a number of other files used to build other Irslib components that are not used in
mplrs; most relevant of these is the C++ parallel wrapper (plrs.cpp) used in plrs. Sample
input files for mplrs can be found in the ine/ directory. See the programmer’s guide for more
information on other files and details on the legacy Irslib code.

The mplrs code is split into three main functions: mplrs master, mplrs_worker, and
mplrs_consumer which correspond to Algorithms [3] [d] and [5] respectively. The master sends
work in the send_work function which calls the setparams function to set budgeting param-
eters as in Algorithm [3| The hook to Irslib code (BRS call in Algorithm [4)) occurs in the
do_work function. This is where actual work is performed.

The data structures particular to mplrs are defined in mplrs.h. Variables used only by
the master are collected in the masterv data structure, which contains cobasis_list (L in
Algorithm . Likewise, variables used only by the consumer are collected in the consumerv
structure. Each process has an mplrsv structure. The mplrs.h file also contains definitions
for the default values of all options.
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