
Untestable Properties Expressible with Four
First-Order Quantifiers?

Charles Jordan?? and Thomas Zeugmann? ? ?

Division of Computer Science
Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan

{skip,thomas}@ist.hokudai.ac.jp

Abstract. In property testing, the goal is to distinguish between struc-
tures that have some desired property and those that are far from having
the property, after examining only a small, random sample of the struc-
ture. We focus on the classification of first-order sentences based on their
quantifier prefixes and vocabulary into testable and untestable classes.
This classification was initiated by Alon et al. [1], who showed that graph
properties expressible with quantifier patterns ∃∗∀∗ are testable but that
there is an untestable graph property expressible with quantifier pattern
∀∗∃∗. In the present paper, their untestable example is simplified. In par-
ticular, it is shown that there is an untestable graph property expressible
with each of the following quantifier patterns: ∀∃∀∃, ∀∃∀2, ∀2∃∀ and ∀3∃.
Key words: property testing, logic

1 Introduction

In property testing, we take a small, random sample of a large structure and wish
to determine if the structure has some desired property or if it is far from having
the property. The hope is that we can gain efficiency in return for not deciding
the problem exactly. We focus on the classification problem for testability, where
the goal is to determine exactly which prefix vocabulary classes of first-order logic
are testable and which are not.

Property testing was first introduced in the context of program verification
(cf. Rubinfeld and Sudan [11] and Blum et al. [4]). The study of combinatorial
property testing was initiated by Goldreich et al. [8], who focused on graphs.
Alon et al. [1] first considered the classification problem for testability, although
they restricted their attention to undirected, loop-free graphs. They showed that
all such first-order sentences1 with quantifier prefixes of the form ∃∗∀∗ express
testable properties. They also showed that there exists an untestable property

? An earlier version with additional proofs is available as [9]. We would like to thank
an anonymous referee for significant improvements to Theorem 2.

?? Supported by a Grant-in-Aid for JSPS Fellows under Grant No. 2100195209.
? ? ? Supported by MEXT Grand-in-Aid for Scientific Research on Priority Areas under

Grant No. 21013001.
1 We assume throughout that all sentences are in prenex normal form.

2 C. Jordan and T. Zeugmann

expressible with the prefix ∀∗∃∗. The example they give is (essentially) an en-
coding of graph isomorphism that can be expressed with a quantifier prefix of
the form ∀12∃5.

In studying the classification problem, it is necessary to determine the min-
imum number of quantifiers needed to express untestable properties. Addition-
ally, the first-order theory of graphs is not restricted to undirected, loop-free
graphs. Here, we show that there exists an untestable property of directed graphs
that is expressible in first-order sentences with prefixes ∀∃∀∃, ∀∃∀2, ∀2∃∀, and
∀3∃, when equality (=) is allowed (see Theorem 2 for a more formal statement).
That is, with prefixes of these patterns and when equality is allowed, four first-
order quantifiers suffice to express an untestable graph property. The proof is
a modification of the proof by Alon et al. [1], which is made possible by the
presence of directed edges and loops.

The results in Jordan and Zeugmann [10] show that one universal quantifier
is not sufficient to express an untestable property (regardless of the vocabulary),
and so it would be interesting to determine the status of the remaining prefixes
with two universal quantifiers.

A class of first-order logic has the finite model property if every satisfiable
formula in the class has a finite model. Classes without the finite model property
contain infinity axioms, i.e. satisfiable formulas without finite models. The cur-
rent classification for testability closely resembles the classification for the finite
model property. It would be particularly interesting to determine the testability
of the “minimal” classes with infinity axioms [∀3∃, (0, 1)] and [∀∃∀, (0, 1)]2.

2 Preliminaries

In property testing, the goal is always to distinguish structures that have some
property from those that are far from having the property. We are particularly
interested in properties that are first-order definable, and so we begin by defining
our logic. Enderton [7] provides a more detailed introduction.

The atomic terms are the (countable) variable symbols xi. There are no
function or constant symbols, and so the terms are exactly the atomic terms.
The atomic formulas are E(xi, xj) and xi = xj , for any two variable symbols xi

and xj . The formulas are built from the atomic formulas using the usual Boolean
connectives (i.e., ∧, ∨, →, ↔), negation (¬) and first-order quantifiers (∀, ∃) in
the canonical way. The well-formed formulas or sentences are the formulas which
contain no free variables. We have no further use for formulas that are not well-
formed, and so we will refer to the well-formed formulas simply as formulas.

Our logic contains a special equality predicate symbol (=) which is always
interpreted as true equality (i.e., xi = xj is true iff the two symbols xi and xj

refer to the same object). It also contains a single binary predicate symbol, which
we have given the name E. Of course, the name of this symbol is not important;
any fixed, unique name could have been chosen.
2 These classes do not permit equality and so Theorem 2 does not immediately imply

that the first is untestable.

Untestable Properties Expressible with Four First-Order Quantifiers 3

A structure is an object that allows us to interpret a sentence in our logic.
It consists of a finite universe U over which the variable symbols are allowed to
range, and a binary relation E corresponding to the symbol E in our logic. Any
such object can be considered as a (directed) graph, so from now on we refer to
these structures as graphs. See Diestel [6] for an introduction to graph theory.

Definition 1. A graph A = (UA, EA) is a pair consisting of a finite set of
vertices UA and a binary edge relation EA ⊆ UA × UA.

The natural numbers are denoted by N := {0, 1, . . .}. For any set U we
write |U | to denote the cardinality of U and generally identify U with the set
{0, . . . , |U | − 1}. We denote the set of graphs on exactly n vertices by Gn and
the set of all graphs by G := ∪n∈NGn. The size of the universe of a graph
A = (UA, EA) is denoted by #(A) and defined as #(A) := |UA|.

A property P is any subset of G. Sentences are interpreted in the usual way,
and so we can decide A |= ϕ for any fixed graph A and first-order sentence ϕ.
Each sentence ϕ therefore defines a property, namely the set of its models,

Pϕ := {A | A ∈ G and A |= ϕ} .

The properties that we use in the proof of Theorem 2 involve encodings of
isomorphisms. Graphs A = (UA, EA) and B = (UB , EB) are isomorphic if there
is a bijection f : UA → UB such that for all (x, y) ∈ UA × UA, (x, y) ∈ EA

iff (f(x), f(y)) ∈ EB . We say that a property P is closed under isomorphisms
if for all isomorphic A,B ∈ G, it is true that A ∈ P iff B ∈ P . All properties
expressible in our logic are closed under isomorphisms.

The goal in property testing is to distinguish between structures that have
properties and structures that are far from having them. This requires a distance
measure, which we define next. In the following, ⊕ denotes exclusive-or and EA

and EB are the edge relations of A and B, respectively.

Definition 2. Let n ∈ N and let U be any universe such that |U | = n. Further-
more, let A = (U,EA) and B = (U,EB) be any two graphs with universe U . The
distance between A and B is

dist(A,B) :=
|{(x1, x2) | x1, x2 ∈ U and EA(x1, x2)⊕ EB(x1, x2)}|

n2
.

Note that by definition, #(A) = #(B) = n. The dist distance is the fraction
of edges on which the two graphs disagree. This is the dense graph model intro-
duced by Goldreich et al. [8] and is essentially based on the adjacency matrix
representation. The dist distance generalizes to properties in the following way.

Definition 3. Let P ⊆ G be a property of graphs and let A ∈ Gn be a graph
with n vertices. Then,

dist(A,P) := min
A′∈Gn∩P

dist(A,A′) .

4 C. Jordan and T. Zeugmann

We are now able to define property testing itself. The following definitions
are typical, but we will also mention several variations.

Definition 4. An ε-tester for property P is a randomized algorithm given an
oracle which answers queries for the universe size and queries for the existence
of edges connecting given nodes in a graph A. The tester must accept with prob-
ability at least 2/3 if A has P and must reject with probability at least 2/3 if
dist(A,P) ≥ ε.

Definition 5. A property P is testable if for every ε > 0 there is an ε-tester
for P making a number of queries which is bounded from above by a function
depending only on ε.

We allow different ε-testers for each ε > 0 and our definitions are there-
fore non-uniform. The uniform case is strictly more difficult (see, e.g., Alon and
Shapira [3]). We are interested in proving untestability, and our results hold
even in the non-uniform case. In oblivious testing (see Alon and Shapira [2]),
the testers are not given access to the size of the universe. Again, our results hold
in the more general case where the testers may make decisions based on the size
of the universe. In a similar way, the number of loops in a graph is asymptoti-
cally insignificant compared to the number of possible non-loops. Modifying the
definition of distance to account for this makes testing strictly more difficult (see
Jordan and Zeugmann [10]) and so we use the more general definition above.

However, the (possible) loops seem to affect the notion of indistinguishability
defined by Alon et al. [1]. We use the following modification of Definition 2.

Definition 6. Let n ∈ N and let U be any universe such that |U | = n. Further-
more, let A = (U,EA) and B = (U,EB) be any two graphs with universe U . For
notational convenience, let

d1(A,B) :=
|{x | x ∈ U and EA(x, x)⊕ EB(x, x)}|

n
, and

d2(A,B) :=
|{(x1, x2) | x1, x2 ∈ U, x1 6= x2, and EA(x1, x2)⊕ EB(x1, x2)}|

n2
.

The mr-distance between A and B is

mrdist(A,B) := max {d1(A,B), d2(A,B)} .

Again, note that #(A) = #(B) = n. Although the number of loops is asymp-
totically insignificant, a tester can easily restrict its queries to the form (x, x)
and distinguish between graphs that differ only in loops. Definition 6 is a spe-
cial case of a definition from Jordan and Zeugmann [10], and mrdist abbreviates
“maximum relational distance.” We use the following simple variation of indis-
tinguishability for graphs that may contain loops.

Definition 7. Two properties P and Q of graphs are indistinguishable if they
are closed under isomorphisms and for every ε > 0 there exists an Nε such that
for any graph A with universe of size n ≥ Nε, if A has P then mrdist(A,Q) ≤ ε
and if A has Q then mrdist(A,P) ≤ ε.

Untestable Properties Expressible with Four First-Order Quantifiers 5

The important fact to note is that indistinguishability preserves testability.
The proof of the following theorem is analogous to that given in Alon et al. [1].

Theorem 1. If P and Q are indistinguishable, then P is testable if and only if
Q is testable.

Our classification definitions are from Börger et al. [5] except that we omit
function symbols. We omit a detailed discussion, but the following is for com-
pleteness. Let Π be a string over the four-character alphabet {∃,∃∗,∀,∀∗}. Then
[Π, (0, 1)]= is the set of sentences in prenex normal form which satisfy the fol-
lowing conditions:

1. The quantifier prefix is contained in the language specified by the regular
expression Π.

2. There are zero (0) monadic predicate symbols.
3. In addition to the equality predicate (=), there is at most one (1) binary

predicate symbol.
4. There are no other predicate symbols.

That is, [Π, (0, 1)]= is the set of sentences in the logic that we have defined above
whose quantifier prefixes in prenex normal form match Π.

3 An Untestable Property

We will begin by defining property P , which is essentially the graph isomorphism
problem for undirected loop-free graphs encoded in directed graphs that may
contain loops. We will begin by showing in Lemma 1 that P is indistinguishable
from property Pf (cf. Definition 9) which is expressible in any of the prefix
vocabulary classes mentioned in Theorem 2. We will then show that P is not
testable. Indistinguishability preserves testability and so this implies that Pf is
also untestable, which will suffice to show the following theorem.

Theorem 2. The following prefix classes are not testable:

1. [∀∃∀∃, (0, 1)]=
2. [∀∃∀2, (0, 1)]=
3. [∀2∃∀, (0, 1)]=
4. [∀3∃, (0, 1)]=

We define property P as follows. First, a graph that has property P must
consist of an even number of vertices, of which exactly half have loops. The
subgraph induced by the vertices with loops must be isomorphic to that induced
by the vertices without loops, ignoring all loops, and there must be no edges
connecting the vertices with loops to those without loops. Finally, all edges
must be undirected (i.e., an edge from x to y implies an edge from y to x). We
refer to such undirected edges as paired edges.

Definition 8. A graph G ∈ Gn has P iff the following conditions are satisfied:

6 C. Jordan and T. Zeugmann

1. For some s, n = 2s.
2. There are exactly s vertices x satisfying E(x, x). We will refer to the set of

such vertices as H1 and to the remaining s vertices as H2.
3. The substructure induced by H1 is isomorphic to that induced by H2 when

all loops are removed. That is, there is a bijection f from H1 to H2 such that
for distinct x, y ∈ H1, it is true that G |= E(x, y) iff G |= E(f(x), f(y)).

4. There are no edges between H1 and H2.
5. All edges are paired.

Graph isomorphism is not directly expressible in first-order logic, and so we
use the following encoding where the bijection f is made explicit by adding n
edges between H1 and H2.

Definition 9. A graph G ∈ Gn has Pf iff the following conditions are satisfied:

1. For every vertex x, if E(x, x) then there is an edge from x to exactly one y
such that ¬E(y, y).

2. For every vertex x, if ¬E(x, x) then there is an edge from x to exactly one y
such that E(y, y).

3. For all vertices x and y, E(x, y) iff E(y, x).
4. For all pairwise distinct vertices x1, x2, x3, x4, if E(x1, x1), ¬E(x2, x2),

E(x3, x3), ¬E(x4, x4), E(x1, x2) and E(x3, x4), then E(x1, x3) iff E(x2, x4).

Expressing Conditions 1 and 2 as “there is at most one such y” and “there is
at least one such y,” Pf can be expressed in each of the classes [∀∃∀∃, (0, 1)]=,
[∀∃∀2, (0, 1)]=, [∀2∃∀, (0, 1)]= and [∀3∃, (0, 1)]=.

For example, in the class [∀3∃, (0, 1)]=, we can express Pf by

∀x1∀x3∀x4∃x2 :
[

(
(E(x1, x1)↔ ¬E(x2, x2)) ∧ E(x1, x2)

)
∧[(

(E(x1, x1)↔ ¬E(x3, x3)) ∧ (E(x3, x3)↔ ¬E(x4, x4))∧
E(x1, x3) ∧ E(x1, x4)

)
→ x3 = x4

]
∧(

E(x1, x3)→ E(x3, x1)
)
∧(

[E(x1, x1) ∧ E(x3, x3) ∧ x1 6= x3 ∧ ¬E(x4, x4) ∧ E(x3, x4)]→

(¬E(x2, x2) ∧ E(x1, x2) ∧ (E(x1, x3)↔ E(x2, x4)))
)]
.

To express Pf with prefixes ∀2∃∀ and ∀∃∀2, it suffices to reorder the quanti-
fiers (keeping x2 existential and x1 first). The prefix ∀∃∀∃ requires a few addi-
tional modifications.

The two properties P and Pf differ only in the edges which make the iso-
morphism explicit in Pf but are forbidden in P . There are at most n such edges,
none of which are loops. This suffices to prove the following.

Lemma 1. Properties P and Pf are indistinguishable.

Untestable Properties Expressible with Four First-Order Quantifiers 7

Proof. Let ε > 0 be arbitrary and let Nε = ε−1. Assume that G is a structure
that has property P and that #(G) > Nε. We will show that mrdist(G,Pf) < ε.

Structure G has P and so there is a bijection f satisfying Condition 3 of
Definition 8. For all x ∈ H1, we add the edges E(x, f(x)) and E(f(x), x) and
call the result G′. Property Pf differs from P only in that the isomorphism is
made explicit by the edges connecting loops and non-loops, and so G′ has Pf .
Indeed, it satisfies Conditions 1 and 2 of Definition 9 because G had no edges
between loops and non-loops and we have connected each to exactly one of the
other, following the bijection f . Next, G′ satisfies Condition 3 of Definition 9
because G satisfied Condition 5 of Definition 8 and we added only paired edges.
Finally, G′ satisfies Condition 4 of Definition 9 because the edges between loops
and non-loops follow the isomorphism f from Condition 3 of Definition 8.

We have added exactly n (directed) edges, none of which are loops and so
mrdist(G,P) ≤ mrdist(G,G′) = 0 + n/n2 < ε, where the inequality holds for
n > Nε. The converse is analogous; given a G that has property Pf , we simply
remove the n edges between loops and non-loops after using them to construct
the isomorphism f . ut

Properties P and Pf are indistinguishable. Testability is preserved by indis-
tinguishability (cf. Theorem 1) and thus showing that P is not testable suffices
to prove that Pf is not testable (and therefore Theorem 2). The proof closely
follows that of Alon et al. [1]. The crucial lemma is the following, a combination
of Lemmata 7.3 and 7.4 from Alon et al. [1]. We use countH(T) to refer to the
number of times that a graph T occurs as an induced subgraph in H. A bipartite
graph is a graph where we can partition the vertices into two sets H1 and H2 such
that there are no edges “internal” to the partitions. That is, for all x1, y1 ∈ H1

and x2, y2 ∈ H2, ¬E(x1, y1) and ¬E(x2, y2). See Jordan and Zeugmann [9] for
an explicit proof of Lemma 2, which is technical and long.

Lemma 2 (Alon et al. [1]). There exists a constant ε′ > 0 such that for every
D ∈ N, there exist two undirected bipartite graphs H = H(D) and H ′ = H ′(D)
satisfying the following conditions.

1. Both H and H ′ have a bipartition into classes U1 and U2, each of size t.
2. In both H and H ′, for all subgraphs X with size t/3 ≤ #(X) ≤ t, there are

more than t2/18 undirected edges between X and the remaining part of the
graph.

3. The minimum degree of both H and H ′ is at least t/3.
4. dist(H,H ′) ≥ ε′.
5. For all D-element graphs T , countH(T) = countH′(T).

It is worth noting that the above is for undirected, loop-free graphs. However,
bipartite graphs never have loops and “undirected” in our setting results in
paired edges. It is easy to show that if two structures agree on the counts for all
size D induced subgraphs, they agree on the counts for all induced subgraphs of
size at most D. This is done by applying Lemma 3 inductively.

8 C. Jordan and T. Zeugmann

Lemma 3. Let H and H ′ be two graphs, both of size s, and let 2 < D ≤ s. If
for every graph T of size D, countH(T) = countH′(T), then for every graph T ′

of size D − 1, countH(T ′) = countH′(T ′).

Proof. Assume H and H ′ satisfy the initial conditions of Lemma 3, but that
there exists a T ′ of size D − 1 such that countH(T ′) 6= countH′(T ′). Let C =
{T | #(T) = D and T contains T ′ as an induced subgraph}.

Note that
∑

T∈C countH(T) countT (T ′) = countH(T ′)(s − D + 1) and like-
wise for

∑
T∈C countH′(T) countT (T ′). We have assumed that H and H ′ satisfy

countH(T) = countH′(T) for T ∈ C, but countH(T ′) 6= countH′(T ′), giving a
contradiction and the Lemma follows. ut

Lemma 4. Property P is not testable.

Proof. Assume that P is testable. Then, there exists an ε-tester for

ε := min {ε′/8, 1/144} ,

where ε′ is the constant from Lemma 2. We can assume without loss of generality
that the tester queries all edges in a random sample of D := D(ε) vertices.

Consider the graph G which contains two copies of the H = H(D) from
Lemma 2, where one of the copies is marked by loops on each vertex and there
are no edges between the copies. This graph has property P , and so the tester
must accept it with probability at least 2/3. Next, consider the graph G′ which
contains one copy of H marked by loops and one copy of H ′, again where
there are no edges between the two (induced) subgraphs. Graph G′ is such that
dist(G′, P) ≥ ε (cf. Lemma 5) and so it must be rejected with probability at
least 2/3. Both G and G′ consist of two bipartite graphs, each of which has a
bipartition into two classes of size t, and so #(G) = #(G′) = 4t.

However, G and G′ both contain exactly the same number of each induced
subgraph with D vertices. This is because both have loops on exactly half of
the vertices and the two halves are not connected by any edges. Some of the D
vertices must be in the first copy of H and the others in the second H (resp. H ′).
By Lemma 3, H and H ′ contain the same number of each induced subgraph with
size at most D. The tester therefore obtains any fixed sample with the same
probability in G and G′ and is unable to distinguish between them. Hence, it is
unable to accept G with probability 2/3 and also reject G′ with probability 2/3.
This completes the proof, taking into account Lemma 5 below. ut

Recall that testing is easiest under the dist definition, and so Lemma 4 also
implies P is not testable under other definitions.

Lemma 5. The graph G′ is such that dist(G′, P) ≥ ε.

Proof. Suppose that dist(G′, P) < ε. Then, there is an M ∈ P such that
dist(G′,M) < ε. Let M1 be the set of vertices with loops in M and let M2 be
the set of vertices without loops. We will refer to the subgraph induced by the
vertices with loops in G′ as H and to that induced by those without loops as H ′.

Untestable Properties Expressible with Four First-Order Quantifiers 9

Without loss of generality, assume that |M1∩H| ≥ |M1∩H ′|. Then, |M1∩H| ≥ t.
We let α1 be the set M1\H and α2 be M2\H ′. Note that |α1| = |α2| and |α1| ≤ t
because |M1 ∩H| ≥ t.

Informally, M is formed by moving the vertices α1 from H ′ to H and the
vertices α2 from H to H ′, and then possibly making other changes. There are
three cases, which we will consider in order.

1. |α1| = 0.
2. |α1| ≥ t/3.
3. 0 < |α1| < t/3.

If |α1| = 0, then we can construct M from G′ without exchanging vertices
between H and H ′, and in particular, construct H ′ from H (ignoring loops), by
making less than ε(4t)2 modifications. However, dist(H,H ′) ≥ ε′ by Lemma 2
and so this must require at least ε′(2t)2 modifications. By definition, ε < ε′/4
so ε(4t)2 < ε′(2t)2. The first case is therefore not possible.

Recall that |α1| ≤ t. If |α1| ≥ t/3, then by Condition 2 of Lemma 2 there
exists at least t2/18 undirected edges between α1 and H ′\α1 and between α2

and H\α2. All of these edges must be removed to satisfy P because each would
connect a vertex with a loop to a vertex without a loop. Therefore,

dist(G′,M) ≥ 4t2/18
(4t)2

= 1/72 .

But, ε < 1/72 and so the second case is not possible.
Therefore, it must be that 0 < |α1| < t/3. Here, we will show that it must be

the case that α1 and α2 are relatively far apart. If they are not far apart, then it
is possible to modify them instead of swapping them. This essentially results in
the first case considered above. Condition 3 of Lemma 2 requires that each vertex
has relatively high degree. These edges can be either internal to α1 (resp. α2)
or connecting α1 (α2) with H ′\α1 (H\α2). If α1 and α2 are relatively far apart,
then we will see that this forces too many edges “outside” of α1 (resp. α2),
resulting in a similar situation to the second case considered above.

We have assumed that dist(G′,M) < ε and that we can construct M from
G′ by making less than ε(4t)2 modifications if we move α1 to H and α2 to H ′.
This entails the following modifications.

1. Removing all edges connecting α1 to H ′\α1.
2. Removing all edges connecting α2 to H\α2.
3. Adding any required edges between α1 and H\α2.
4. Adding any required edges between α2 and H ′\α1.
5. Changing α1, α2, H\α2 and H ′\α1 to their final forms.

We can assume that the total number of modifications is less than ε(4t)2.
It must be that dist(α1, α2)|α1|2/(4t)2 + ε ≥ ε′/4. If this does not hold, then
we could first modify α1 to make it identical to α2 and then make H ′ identical
to M2. Next, M2 is identical to M1, which we could make identical to H. This

10 C. Jordan and T. Zeugmann

would require less than ε′(2t)2 modifications, which would violate Lemma 2.
Therefore,

dist(α1, α2) ≥ 16(ε′/4− ε)t2

|α1|2
. (1)

If both α1 and α2 are complete graphs then they cannot be far apart. Given
that all vertices in α1 (α2 is analogous) have degree at least t/3, then there must
be at least

|α1|(t/3− |α1|+ 1) + 2r

edges connecting α1 to H ′\α1, where r is the number of edges internal to α1

that must be omitted to satisfy (1). The simple lower bound on r, the number
of edges needed for two graphs with at most r edges to be dist(α1, α2)-far, that
follows from dist(α1, α2) ≤ 2r/|α1|2 is sufficient. Finally, combining this with
Inequality (1) yields

r ≥ 8(ε′/4− ε)t2 . (2)

The number of edges connecting α1 to H ′\α1 is therefore, by (2), at least

|α1|(t/3− |α1|+ 1) + 16(ε′/4− ε)t2 ≥ 16(ε′/4− ε)t2 .

All of these edges must be removed to move α1 (resp. α2), and so

dist(G′,M) ≥ 16(ε′/4− ε)t2

(4t)2
=

ε′

4
− ε .

We have defined ε ≤ ε′/8 and so dist(G′,M) ≥ ε, a contradiction.
The cases are exhausted and so dist(G′, P) ≥ ε as desired. ut

4 Conclusion

Property testing is an application of induction (in the philosophy of science
sense), in which we obtain a small, random sample of a structure and seek to
determine whether the structure has a desired property or is far from having the
property. We have considered the classification problem for testability, wherein
we classify the prefix vocabulary classes of first-order logic according to their
testability. In particular, we simplified the untestable property, expressible with
quantifier prefix ∀12∃5, from Alon et al. [1] for the case of directed graphs which
may contain loops. This implies that there exists an untestable property express-
ible with quantifier prefixes ∀∃∀∃, ∀∃∀2, ∀2∃∀ and ∀3∃.

In the classification problem for testability, it is necessary to determine the
minimal untestable classes. Informally, we seek the untestable properties that
are easiest to express. Jordan and Zeugmann [10] showed that classes with (at
most) one universal quantifier are testable, and so there are at least two minimal
untestable classes which have either two or three universal quantifiers.

The current classification for testability closely resembles the classification
for the finite model property (see, e.g., Section 6.5 of Börger et al. [5]). The
“minimal” classes without this property (i.e., those with infinity axioms) are
[∀3∃, (0, 1)] and [∀∃∀, (0, 1)], while the case of [∀2∃, (0, 1)]= is apparently open.
It would be particularly interesting to determine the testability of these classes.

Untestable Properties Expressible with Four First-Order Quantifiers 11

Acknowledgments We would like to thank an anonymous referee for signifi-
cantly improving Theorem 2 by eliminating one variable from each prefix, adding
∀∃∀∃, and also for simplifying the example following Definition 9.

References

[1] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large
graphs. Combinatorica, 20(4):451–476, 2000.

[2] N. Alon and A. Shapira. A characterization of the (natural) graph properties
testable with one-sided error. SIAM J. Comput., 37(6):1703–1727, 2008.

[3] N. Alon and A. Shapira. A separation theorem in property testing. Combinatorica,
28(3):261–281, 2008.

[4] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. J. of Comput. Syst. Sci., 47(3):549–595, 1993.

[5] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer-
Verlag, 1997.

[6] R. Diestel. Graph Theory. Springer, third edition, 2006.
[7] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, second

edition, 2000.
[8] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to

learning and approximation. J. ACM, 45(4):653–750, 1998.
[9] C. Jordan and T. Zeugmann. Contributions to the classification for testability:

Four universal and one existential quantifier. Technical Report TCS-TR-A-09-39,
Hokkaido University, Division of Computer Science, November 2009.

[10] C. Jordan and T. Zeugmann. Relational properties expressible with one universal
quantifier are testable. In O. Watanabe and T. Zeugmann, editors, Stochastic
Algorithms: Foundations and Applications, 5th International Symposium, SAGA
2009, Sapporo, Japan, October 2009, Proceedings, volume 5792 of Lecture Notes
in Computer Science, pages 141 – 155. Springer, 2009.

[11] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with appli-
cations to program testing. SIAM J. Comput., 25(2):252–271, 1996.

