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Abstract

In property testing, the goal is to distinguish structures that have some desired property
from those that are far from having the property, based on only a small, random sample
of the structure. We focus on the classification of first-order sentences according to their
testability. This classification was initiated by Alon et al. [2], who showed that graph
properties expressible with prefix 3*V* are testable but that there is an untestable graph
property expressible with quantifier prefix V*3*. The main results of the present paper
are as follows. We prove that all (relational) properties expressible with quantifier prefix
F*V3* (Ackermann’s class with equality) are testable and also extend the positive result
of Alon et al. [2] to relational structures using a recent result by Austin and Tao [8].
Finally, we simplify the untestable property of Alon et al. [2] and show that prefixes V33,
V23V, V3v? and V3V3 can express untestable graph properties when equality is allowed.

Keywords: Property testing, logic, randomized algorithms, Ackermann’s class,
Ramsey’s class

1. Introduction

In property testing, we take a small random sample of a large structure and wish
to determine if the structure has some desired property or if it is far from having the
desired property. The hope is that we can gain efficiency in return for not deciding the
problem exactly. We focus on the classification problem for testability, where the goal is
to determine exactly which prefix-vocabulary fragments of first-order logic are testable
and which are not. This problem was first considered by Alon et al. [2], who focused on
quantifier alternations (as opposed to quantifiers) and undirected, loop-free graphs.

More concretely, we would like to know the minimum number of universal quantifiers,
as well as of existential quantifiers, required to express an untestable property. In addi-
tion, we would like to know the minimum total number of quantifiers needed to express
an untestable property, as it is not prima facie necessary that one can achieve these two
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minima simultaneously. Previous work by Alon et al. [2] implies upper bounds of twelve
universal, five existential and seventeen total quantifiers, and it is natural to ask if these
bounds can be improved. The following is an informal summary of our results addressing
this question.

The minimum numbers of quantifiers sufficient to express an untestable property in
a first-order relational language are

1. Two universal quantifiers;
2. One existential quantifier;
3. Three® quantifiers in total.

In addition, the first two minima can be achieved in the vocabulary of directed graphs
(i.e., one binary relation).

If we consider the pattern of quantifiers instead of focusing exclusively on counting
them, our results show that one can express an untestable (graph) property with prefixes
v33, v23v, V3v?, and V3v3. It is trivial to show the testability of formulae with only
existential quantifiers, but it is natural to consider the remaining prefixes of length four.

In Subsection 4.1, we show that all formulae containing at most one universal quanti-
fier are testable, even without a restriction to graph properties or four quantifiers. This
class is well-known as Ackermann’s class with equality, and covers four of the remaining
prefixes of length four. In Subsection 4.2, we extend the result of Alon et al. [2] from
graphs to relational structures and show that all formulae of the form 3*V* are testable.
This covers three additional prefixes of length four.

We have recently shown that one can express untestable graph properties with prefix
V3V (improving on prefixes V23V, V3IV2, and V3IV3 from this paper), see Jordan and
Zeugmann [27]. This prefix was first studied by Kahr, Moore and Wang [28].

The testability of the remaining prefixes, i.e., 3v?3 and ¥?32, remains open. These
prefixes are variations of the Godel class (prefixes containing at least V23).

The paper is structured as follows. In Subsection 1.1, we outline the history of testing,
focusing on results that influence our approach. We state the main results of this paper
in Subsection 1.3. Definitions and notation are in Section 2. In Section 3, we prove
several basic results that are needed in later sections. The main results are in Section 4
(testable classes) and Section 5 (untestable classes).

1.1. History of Testing

We begin with a brief history and overview of property testing. There is a recent
introduction to graph property testing by Goldreich [21], and two recent surveys by
Ron, one focusing on connections with learning theory [43] and one focusing on the
algorithmic techniques [44] used in testability. There are also earlier surveys, including
those by Fischer [15] and Ron [42].

Property testing is a form of approximation where we trade accuracy for efficiency.
Probabilistic machines seem to have been first formalized by de Leeuw et al. [32], who
showed that such machines cannot compute uncomputable properties under reasonable
assumptions. However, they mention the possibility that probabilistic machines could

3In the present paper, we only prove that the minimum is either three or four. During the reviewing
process, we found an untestable property with prefix V3V, see Jordan and Zeugmann [27].
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be more efficient than deterministic machines, a topic which was then investigated by
Gill [19]. An early example of such a result is Freivalds’ [18] matrix multiplication checker.

The study of property testing itself began in program verification (see Blum et al. [10]
as well as Rubinfeld and Sudan [45]). Goldreich et al. [22] first considered the testability
of graph properties and showed the existence of testable NP-complete properties. An
approach using incidence lists to represent bounded-degree graphs was introduced by
Goldreich and Ron [20]. Parnas and Ron [37] generalized this approach and attempted
to move away from the functional representation of structures. There has been a great
deal of recent work on graph property testing, see the survey by Alon and Shapira [5].

For other types of structures, Alon et al. [4] showed that the regular languages are
testable and that there exist untestable context-free languages. Chockler and Kupfer-
man [13] extended the positive result to the w-regular languages.

There is also recent work on testing properties of (usually uniform) hypergraphs.
Fischer et al. [17] defined a general model that is roughly equivalent to one of our models,
namely 7, based on Definition 10 below, and showed that hypergraph partition problems
are testable in this framework. Very recently, Austin and Tao [8] have shown that all
hereditary properties* of colored, directed hypergraphs are testable in a model that is
roughly equivalent to another of our models, 7,,, based on Definition 13 below.

Szemerédi’s regularity lemma (see, e.g., the survey by Rodl and Schacht [41]) has
been extremely influential in (dense) graph property testing and there has been a great
deal of work on recent extensions (see, e.g., [23, 40, 49]) of this lemma to hypergraphs.
However, as Alon et al. [2] noted, proofs of testability that avoid the regularity lemma
often result in better query complexity. We therefore prove testability directly when we
know how to.

Alon et al. [2] began a logical characterization of the testable (graph) properties, see
Subsection 1.2. Alon and Shapira [6] gave a characterization of a natural subclass of the
graph properties testable with one-sided error, which Rodl and Schacht [39] generalized
to hypergraphs. Alon et al. [3] showed a combinatorial characterization of the graph
properties testable with a constant number of queries. It would be particularly interesting
to consider extensions of this last result to hypergraphs or relational structures.

1.2. Previous Work on the Classification

We briefly outline prior work on the classification for testability before stating our
main results. We begin with monadic first-order logic. Lowenheim [34] proved that
satisfiability is decidable® for monadic first-order logic, and McNaughton and Papert [35]
showed that it (with ordering and some arithmetic) characterizes the star-free regular
languages. The testability of this class is then implied by a result of Alon et al. [4].
Using instead Biichi’s [12] result that monadic second-order logic characterizes the regular
languages, we get a parallel with Skolem’s [47] extension of Lowenheim’s result to second-
order logic. Of course, we are focused on the testability of classes of first-order formulae.

Below, we use the classification notation that will be introduced formally in Defini-
tion 8. Informally, we represent classes with a triple [II, p]., where II denotes the pattern

4A hereditary property is one that is closed under taking induced substructures.
5A class is said to be decidable (for satisfiability) if, given an arbitrary formula from the class, one
can decide if there exists a (possibly infinite) model satisfying the formula.
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of quantifiers allowed, the infinite sequence p denotes the maximum number of permitted
predicate symbols for each arity (we omit trailing zeros and all means that any number
of predicate symbols with any arities are permitted), and e denotes whether = is allowed.

Skolem [48] also showed that [V*3*, all] is a reduction class®. An untestable graph
property (essentially an encoding of graph isomorphism) was found by Alon et al. [2].
This property is expressible in [V*3*,(0,1)]=, and an examination of the proof reveals
that a prefix of ¥V123° suffices.

The class [3*V*, all |= was first studied in a seminal paper by Ramsey [38], who showed
that it is decidable as part of a stronger result characterizing its spectrum. Alon et al. [2]
showed that the restriction of Ramsey’s class to undirected loop-free graphs (a restriction
of [F*V*,(0,1)]=) is testable.

In Jordan and Zeugmann [27], we improved on some of the prefixes of this paper and
showed that [V3V, (0,1)]= is untestable.

1.8. Statement of Results

Our main results are as follows. First, we develop a framework for relational prop-
erty testing including variations corresponding to the different models considered in the
literature for non-uniform hypergraph” testing. We use this framework to prove the
following.

1. All (relational) properties expressible by formulae in Ackermann’s class with equal-
ity ([3*V3*, all]=) are testable in all of our models.

2. All (relational) properties expressible in Ramsey’s class ([3*V*, all]=) are testable
in all of our models. This extends the result by Alon et al. [2] to the full class.

3. There exist graph properties expressible in the classes [V33, (0, 1)]=, [v*3V, (0,1)]=,
[v3v2,(0,1)]= and [V3V3, (0,1)]= which are untestable in all of our models. This

sharpens the untestable class of Alon et al. [2].

The latter two results improve the results of Alon et al. [2], and the second result relies
on an application of a strong result by Austin and Tao [8]. In the notation introduced
as Definition 8 below, the current classification for testability is as follows.

e Testable classes

1. Monadic first-order logic: [all , (w)]=.
2. Ackermann’s class with equality: [3*V3*, all]-.
3. Ramsey’s class: [F*V*, all]_.

e Untestable classes

1. [v33,(0,1)]=.
2. [vav, (0,1))—.

6A class is a reduction class if the satisfiability problem for first-order logic can be reduced to the
satisfiability problem for the class. These classes are therefore undecidable (for satisfiability).

7 A hypergraph is uniform if all edges have the same arity, and non-uniform if edges may have different
arities.



2. Preliminaries

Instead of restricting our attention exclusively to graphs, we focus on property testing
in a more general setting. We begin by defining vocabularies.

Definition 1. A wvocabulary 7 is a tuple of distinct predicate symbols R; together with
their arities a;,

7:=(R{',...,R%).

Two examples (unique up to renaming) of vocabularies are 7¢ := (E?), the vocabulary
of directed graphs and 7 := (S'), the vocabulary of binary strings. We generally use
vocabulary 7 (i.e., s predicate symbols R; with arities a;) in proofs that do not depend
on the vocabulary.

Definition 2. A structure A of type 7 is an (s + 1)-tuple
A= (URE,...,RY,

where U is a finite universe and each Rf‘ C U% is a predicate corresponding to the
predicate symbol R; of 7.

We identify U with the non-negative integers {0, ...,n—1} and use n = #(A) for the
size of the universe of a structure A. We often omit the explicit mention of A and use n
to refer to the size of structures whose identity is clear from context. The universe U of
a binary string is the set of bit positions, which we will identify as {0,...,n — 1} from
left to right. For i € U, we interpret ¢ € S as “bit ¢ of the string is 1.” We generally
omit the superscript A from the relations and include it only when we wish to explicitly
distinguish the same relation in different structures.

The set of all structures of type 7 and universe size n is STRUC™(7) and the set
of all (finite) structures of type 7 is STRUC(7) := U,,~o STRUC™ (7). A property P
of structures with vocabulary T is any subset of STRUC(t). For a structure A with
vocabulary 7, we say A has P if A€ P.

We use language to refer to string properties, P to denote properties and B\C for
set difference. We refer to members of STRUC (7¢) as graphs, and note that our graphs
are directed and may contain loops.

A simple example of a graph property is the property of being a complete graph. This
property is the set of all graphs which have full edge relations, i.e., Px := {J,;~o{(Un, £ |
Uo=10,...,n—1}, EC = U, x U,}.

2.1. Property Testing Definitions

We wish to distinguish, with high probability, between inputs that have a desired
property and inputs that are far from having the property. We begin by defining a
distance measure between structures. Changing the definition of distance results in a
different model for relational testing. The symbol & denotes exclusive-or.

Definition 3. Let A, B € STRUC(7) be any structures such that #(A) = #(B) = n.
The distance between structures A and B is
>ioi {x | x € U and R{ (%) & R (x)}]

dist(A, B) := 5
Dim1 %




The dist distance is the fraction of assignments on which the two structures disagree.
It is equivalent to the definition that would result from mapping relational structures to
binary strings and using the usual definitions for testing strings. We note that Definition 3
is common in the literature on graph property testing, but that it is generally not used in
testing properties of non-uniform hypergraphs (for reasons discussed before Definition 10
below). However, as we will see in Theorem 5, it results in the weakest notion of testability
that we consider and so we will use it when proving untestability results.

We now give the remaining definitions for testing, and will then give alternatives to
Definition 3 (cf. Definitions 10 and 13 below). When proving results, we always state
explicitly which models the results hold in.

Definition 4. Let P be a property of structures with vocabulary 7 and let A be such a
structure with a universe of size n. Then,

dist(A, P) = dist(A4, A) .

min
A’ePNSTRUC™ (1)
Definition 5. An e-tester for property P is a randomized algorithm given an oracle
which answers queries for the universe size and truth values of relations on desired tuples
in a structure A. The tester must accept A with probability at least 2/3 if A has P and
must reject A with probability at least 2/3 if dist(A, P) > e.

Testers are called oblivious (see Alon and Shapira [6]) if they are not allowed to make
decisions based on the size of the universe. More concretely, a tester in their setting
is only allowed to give the oracle a natural @), and the oracle then uniformly randomly
selects @ elements of the universe of A and returns the resulting induced substructure.
However, if A is of size smaller than @, then the entire structure is returned. This is more
restricted than our model, but our positive results hold even in the oblivious setting.

Some of our results hold even when the testers are restricted to one-sided error, where
the following definition applies.

Definition 6. An e-tester for P has one-sided error if it accepts with probability 1 if A
has P and rejects with probability at least 2/3 if dist(A, P) > e.

Definition 7. Property P is testable if for every € > 0 there is an e-tester making a
number of queries which is upper-bounded by a function depending only on ¢.

We say that a property P is testable with one-sided error if the e-testers satisfy the
additional restriction of having one-sided error. Note that we allow the e-testers to be
different for each € > 0. This results in uniform (where the e-testers are computable
given g, or equivalently, where there is a single tester that also takes € as input) and non-
uniform versions of testability. Although testable properties in the literature are usually
uniformly testable, see Alon and Shapira [7] for a property that is testable only with
uncomputable c(¢) and therefore only non-uniformly. Our results hold in both cases®
and so we will not distinguish between them.

8That is, our negative results hold for non-uniform testing and positive results for uniform testing.
In the uniform case, we must restrict Lemma 10 in Section 3 to decidable properties. All properties
considered in the present paper are clearly decidable.
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2.2. Logical Definitions

We use a predicate logic with equality that does not contain function symbols. There
are no ordering symbols such as < or arithmetic relations such as PLUS. The first-order
logic of vocabulary 7 is built from the atomic formulae z; = z; and R;(x1,...,x,,) for
variable symbols x; and predicate symbols R; € T by using the Boolean connectives and
quantifiers 3 and V in the usual way.

Formula ¢ of vocabulary 7 is interpreted as usual and defines property P := {A |
A € STRUC(1) and A |= ¢}. Lower-case Greek letters ¢, 1 and ~ refer to first-order
formulae and z, y, and z to first-order variables. Our classification definitions are from
Borger et al. [11] except that we omit function symbols. Essentially, we classify first-
order sentences according to their pattern of quantifiers and vocabulary. The following
is for completeness, where N = {0, 1,...} denotes the set of natural numbers.

Definition 8. A prefiz vocabulary class is specified as [II, p|., where II is a string over
the four-character alphabet {3,V,3*,V*}, p is a sequence over N and the first infinite
ordinal w, and e is ‘=" or the empty string.

We often use all as an abbreviation for the sequence (w,w,w,...). Now that we have
defined the syntactic specification of a prefix vocabulary class, we define the class specified
by a triple [II, p].. Recall that a first-order sentence ¢ is in prenex normal form if it is in
the form ¢ := myzimoxs ... Tz, ¢ Y, with quantifiers m;, 1 < i < r; and quantifier-free 1.
Such a ¢ is a member of the prefix vocabulary class given by [II, (p1,p2,...)]e, where
pi € NU{w} if

1. The string mims ... 7T, is contained in the language specified by II when II is inter-

preted as a regular expression.

2. If p is not all, at most p; distinct predicate symbols of arity ¢ appear in .

3. Equality (=) appears in ¢ only if e is ‘=".

Here, II is the pattern of quantifiers, p is the maximum number of predicate symbols
of each arity and e determines whether or not the equality symbol is permitted.
We use the following conventions to avoid unwieldy language.

Definition 9. 1. A sentence is (un)testable if the property it defines is (un)testable.
2. A prefix class is testable if every sentence in it expresses a testable property for
every vocabulary in which it is evaluable.
3. A prefix class is untestable if it contains an untestable sentence.

An extension of a vocabulary 7 is any vocabulary formed by adding a new, distinct
predicate symbol to 7. The following simple lemma justifies the intuition that we can
focus on the minimal vocabulary needed in a formula and ignore vocabularies that include
extraneous predicate symbols.

Lemma 1. Let ¢ be a formula in the first-order logic of vocabulary T and let T/ be any
extension of 7. If ¢ defines a property that is testable in the context of T, then the
property of type T defined by ¢ is also testable.



/

PROOF. Let ¢ define property P of type 7 and property P’ of type 7/. Assume the
“new” predicate symbol in 7" is N of arity a. Let T] be an e-tester for P. We will show
that it is also an e-tester for P’. Assume A’ € STRUC(7') has property P’. Removing
the N predicate, the corresponding A € STRUC(7) has property P and so T accepts
with probability at least 2/3, as desired.

Assume that dist(A’, P’) > ¢ and again let A be the structure of type 7 formed by
removing the N predicate from A’. By the definition of distance,

>y {x | x € U and Ri'(x) & RY (%)}

dist(A, P) = min

BeP > n% -
; € U% and R RP
min Zz:l |{X | X ans 1 (X) D 1 (X)}I — diSt(A/,Pl) Z €.
BeP na + Zi:l nai
The tester rejects such an A’ with probability at least 2/3, as desired. ([

Testable properties remain testable when the vocabulary is extended. So it suffices to
consider the minimal relevant vocabulary. Simple modifications of the proof of Lemma 1
give the corresponding results for the variations considered in the next subsection.

2.83. Variations of Relational Property Testing

We now consider alternatives to Definition 3, which was presented first due to its
simplicity. In Definition 3, any difference in low-arity relations is asymptotically domi-
nated by the number of high-arity tuples. However, there are situations where this is not
ideal. Consider (not necessarily admissible?, vertex) 3-colored graphs with the vocabu-
lary 7¢ := (E?, R', G', B'), where we use the binary predicate E to represent edges and
the monadic predicates to represent colors. We might wish to test if the given coloring
is admissible. In large graphs, this is equivalent to testing if the graph is 3-colorable and
ignores the given coloring. We need a different model for our task.

Here we give two alternative definitions for the distance between structures. In testing
we wish to distinguish structures that have a desired property and those that are far from
the property, and so modifying the definition of distance changes the task of testing. As
in Definition 3, the symbol & denotes exclusive-or.

Definition 10. Let A, B € STRUC"(7) be structures. Then, the r-distance is

rdist(A4, B) := max [{x | x € U* and R?(X) @R?(X)H .

1<i<s noi

While Definition 3 gave equal weight to each tuple regardless of its arity, the above
gives equal weight to each relation. Definition 10 is essentially equivalent to the model
used by Fischer et al. [17].

However, loops (i.e., self-edges (z,z)) in graphs and other subrelations of relations
are similar to low-arity relations. In Definition 10, these are still dominated by the
“non-degenerate” tuples. Definition 13 will resolve this issue and result in a model of
testability essentially equivalent to that implicit in Austin and Tao [8]. We begin by
defining the syntactic notion of subtype before proceeding to subrelations.

9 An admissible vertex-coloring is one that assigns distinct colors to adjacent vertices.
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Definition 11. A subtype S of a predicate symbol with arity a is any partition of the
set {1,...,a}.

For example, graphs have a single, binary predicate symbol E? which has two sub-
types: {{1,2}} and {{1},{2}}, corresponding to loops and non-loops respectively. Let
SUB(R) denote the set of subtypes of predicate symbol R.

Definition 12. Let A € STRUC(7) be a structure with vocabulary 7 and universe U,
and let S be a subtype of predicate symbol R* € 7. We define the following.

e sU(S), the tuples that belong to S, is the set of (z1,...,7,) € U® satisfying the
following condition. For every 1 < j,k < a, x; = x}, iff j and k are contained in
the same element of S.

e The subrelation s(S) of A corresponding to S is s4(S) := sY(S) N RA.

Returning to our example of graphs, the sets of loops and non-loops are the subrela-
tions of the edge relation £ corresponding to the subtypes {{1,2}} and {{1},{2}} of E?,
respectively.

We denote the symmetric difference of sets U and V by U AV, i.e.,

UAV :=U\V)U((V\U).

Definition 13. Let A,B € STRUC™(7) be structures with vocabulary 7 and universe
size n. The mr-distance between A and B is

A A B
mrdist(A, B) := max max M )
Rer SeSUB(R) n!/(n—|S|)!

The distance between structures is the fraction of assignments that differ in the most
different subtype. As before, the distance between a structure and a property is the
distance to the closest structure with the property. We let 7 be the set of testable

properties using the dist definition, 7, be the set of testable properties using the rdist
definition and 7,,, be the set of testable properties using the mrdist definition.

3. Basic Results

We begin by relating the three models for testability that we defined in Section 2.
Theorem 5 below is quite simple, however, it justifies our focus on T for untestable classes
and on T,,, for testable classes. First, the distances are related in the following simple
way.

Lemma 2. Let 7 be a vocabulary and A, B € STRUC™ (7). Then,
dist(A, B) < rdist(A, B) < mrdist(A4, B).

PrOOF. We first show dist(A4, B) < rdist(A, B). If an e-fraction of all assignments
differs and we partition the assignments, there must be a partition such that at least an



e-fraction of the assignments differs in the partition. Let dist(A4, B) = € and let a; be
the fraction of R;-assignments that differ between the structures,

L {x | x € U% and R{‘(x) ® RE (%)}
= nai .

Then, rdist(A, B) = max; «; and we can write dist(A, B) in terms of the «;,

a;
dist(A, B) = 2=
> n
This implies that >, a;n® =¢)_ . n%, and so there must be an o; > .

Next, we show that rdist(A4, B) < mrdist(4, B). The proof is nearly identical to the
above. If rdist(A, B) = ¢ then there is an R; such that an e-fraction of the R;-assignments
differs between the structures. If we partition the R;-assignments into the subtypes of R;
(which are disjoint), then there must be some partition such that at least an e-fraction
of the assignments in that partition differ. |

Assume a tester distinguishes between structures A having some property P and
those for which mrdist(A, P) > e. Lemma 2 trivially implies that it also distinguishes
between structures A that have P and those for which rdist(A, P) > e. The case with
rdist and dist is analogous, which proves the following.

Corollary 3. 7, C T, CT.

Of course it is always desirable to show that such containments are strict. We show
the separations by encoding the following language of binary strings, where & denotes
the usual reversal of string u. It is also possible to use, e.g., the untestable property that
will be seen in Section 5 to prove the separations with a first-order expressible property
that is closed under isomorphisms.

Theorem 4 (Alon et al. [4]). The language L = {uuvv | u,v are strings over {0,1}}
is not testable.

In some vocabularies, e.g., binary strings, all three definitions are equivalent. How-
ever, we will show the following.

Theorem 5. 7., CT. CT.

PROOF. The inclusions are by Corollary 3 and so only the separations remain. We
first show that 7\7, is not empty. It suffices to give a vocabulary 7 and a property
with vocabulary 7 that is 7-testable but not 7,-testable. We use the vocabulary 7¢ :=
(E?,SY).

We will show Py € T\T,, where P, C STRUC (7¢) is the set of structures where the
S assignments encode the language L of Theorem 4 above. Recall that n denotes the size
of the universe and our convention is that S(7) is interpreted as “bit 7 of the string is 1”.
Therefore, A has P if there is some 0 < k < n/2 such that for all 0 < i < k, S(4) is true
iff S(2k —1 — 1) is true and for all 0 < j < (n — 2k)/2, S(2k + j) is true iff S(n — 1 — j)
is true. The property uses only the low-arity relation S; the F relation is for “padding”
to make P; testable under the dist definition for distance.

10



We first show that P; is in 7. A structure with a universe of odd size cannot have
P;. A tester can begin by checking the parity of n and rejecting if it is odd and so we
assume in the following that the size of the universe is even.

Lemma 6. Property Py is testable under the dist definition for distance.

PROOF. For any (even) m, 1™ is of the form wuvv. Changing all S(i) assignments to
true in any given A results in the string 1™. This involves at most n modifications and
so dist(A4, P;) < dist(4,4") = O(n)/O(n?) < e, where the final inequality holds for
sufficiently large n. Let N(¢) be the smallest value of n for which it holds. The following
is an e-tester for P, where the input has universe size n.

1. If n < N(g), query all assignments and output whether the input has P;.
2. Otherwise, accept.

If A has Py, we accept with zero error. If dist(A, P1) > ¢, then n < N(g). In this
case we query all assignments and reject with zero error. O Lemma 6

It remains to show that Pj is not testable when using the rdist definition for distance.
We do this by showing that it would contradict Theorem 4 above.

Lemma 7. Property Py is not testable under the rdist definition for distance.

PROOF. Suppose there exist T,.-type e-testers T¢ for all € > 0. The following is a T-type
e-tester for the language L of Theorem 4. Let the input be w, a binary string of length
n.

1. Run T° and intercept all queries.

2. When a query is made for S(i), return the value of S(¢) in w.
3. When a query is made for E(i, j), return 0.

4. Output the decision of T°.

We run 7€ on the A € STRUC™(7¢) that agrees with w on S and where all E
assignments are false. If w € L, then any such A has property P; and so our tester
accepts with probability at least 2/3.

Assume dist(w, L) > e. Then, rdist(A, P;) = dist(w, L) > ¢ and so our tester rejects
with probability at least 2/3. These are testers for the untestable language of Theorem 4,
and so P; is untestable under the rdist definition. OLemma 7

Lemmata 6 and 7, together with Corollary 3 show 7. C 7. The separation T, C T,
is shown in a similar way, using a property with sufficient “padding” to make 7, testing
simple but 7, testing would contradict Theorem 4.

For example, one can use the property P» of graphs in which the “loops” E(i, ) encode
the language from Theorem 4. That is, a graph has P if there is some 0 < k < n/2
such that for all 0 < i < k, E(i,i) is true iff E(2k — 1 —i,2k — 1 — @) is true and for all
0<j<(n—2k)/2, EQ2k + j,2k + j) is true iff E(n — 1 — j,n — 1 — j) is true. The
non-loops are used as padding to ensure 7, testability while 7,,, testability would allow
us to violate Theorem 4. O Theorem 5
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There exist properties that are testable in the rdist sense but not in the mrdist sense.
However, the definition of subtypes and 7,,, testability allows for a simple mapping
between vocabularies such that rdist-testability of certain classes of properties implies
mrdist-testability of the same classes. For these classes, proving testability in the rdist
sense is equivalent to proving it in the mrdist sense, and so it suffices to use whichever
definition is more convenient.

Lemma 8 below is stated in the context of the classification problem for first-order
logic but it is not difficult to prove similar results in other contexts. We use only equality
and that the class is closed under adding additional predicate symbols. The main result
in Subsection 4.1 will be the testability of Ackermann’s class with equality, which is of
the form required by the lemma.

Lemma 8. Let C := [II, all]= be a prefiz vocabulary class. Then, C is testable in the
rdist sense iff it is testable in the mrdist sense.

PRrROOF. Recalling Theorem 5, 7, testability implies 7, testability. We prove 7. testa-
bility of such prefix classes implies 7, testability using Lemma 9. In the following,
&(n, k) is the Stirling number of the second kind.

Lemma 9. Let C = [II, (p1,p2,...)]= be a prefix vocabulary class and, furthermore, let
q =25 0i®(i,5). If C' =[IL,(q1, g2, .. .)|= is T, testable, then C is Ty, testable.

PrOOF. Let ¢ € C be arbitrarily fixed and assume that the predicate symbols of ¢
are {Ri, R}, .. .,RZI)I,R%, ...}, where the arity of R;'- is 7. We construct a ¢’ € C’ and
show that 7, testability of ¢’ implies 7,,, testability of ¢. In ¢’ we will use a distinct
predicate symbol for each subtype of each R} in ¢. A subtype S of R} such that |S| = k
is a partition of the integers {1,...,7} into k non-empty sets and so there are &(i, k)
such subtypes. We therefore require a total of g distinct predicate symbols of arity k.

For example, we will map the “loops” in a binary predicate E to a new monadic
predicate and the non-loops to a separate binary predicate. Formally, recall that sV
maps the subtypes of a predicate to the sets of tuples comprising the subtypes. For our
example of a binary predicate, (0,1) € sV ({{1},{2}}) and (0,0) € sY({{1,2}}). Next,
we let r be a bijection from the subtypes of predicates to their new names, the predicate
symbols that we will use in ¢'.

We create ¢’ by modifying . Replace all occurrences of R;-(xl, ..., 2;) with

\/ [(z1,...,2) € sU(S)/\r(S,R;)(y)]

SESUB(R!)
Note that (z1,...,2;) € sY(S) is an abbreviation for a simple conjunction, e.g., r; #
x9 A1 # x3 A ---. Likewise, y is an |S|-ary tuple, formed by removing the duplicate
components of (z1,...,x;). The implicit mapping from (z1,...,x;) is invertible given S.

To continue our example of a binary predicate E, we would replace all occurrences of
E(x,y) in ¢ with
([ =yANE(2)]V [z #y A Ea(z,y)]).

We assume that ¢’ is 7, testable, and so there exists an e-tester T° for it. We run
this tester and intercept all queries. For a query to r(S, R;)(y), we return the value of
12



R; (z1,...,2;). This is possible because r is a bijection, and so we can retrieve S and R;
using its inverse. Then, we can reconstruct the full i-ary tuple (z1,...,z;) from y and S.
The tester implicitly defines a map'® from structures A which we wish to test for ¢ to
structures A’ (with the same universe as A) which we can test for ¢’. Given an A = ¢,
the corresponding A’ = ¢’ and so T° will accept with probability at least 2/3.
We map each subtype S to a distinct predicate symbol with arity |S|. Therefore, for

any structures A, B, the implicit mapping to A’, B’ is such that
mrdist(A, B) = rdist(4’, B).

For convenience, let P := {B | B = ¢} and P’ := {B’ | B’ = ¢'}. For an A such that
mrdist(A, P) > e, we simulate 7¢ on an A’ such that rdist(A’, P’) > e. The tester T
rejects with probability at least 2/3, as desired. O Lemma 9

Proving 7, testability for [II, all |= implies proving it for all (g1, ...) that are “images” of
some (p1,...) and so Lemma 9 is stronger than required. ULemma 8

The proofs in Subsection 4.2 and Section 5 will follow the proofs by Alon et al. [2], and
in particular rely on a generalization of their notion of indistinguishability to relational
structures, which we define as follows.

Definition 14. Let Py, P, C STRUC(7) be properties with vocabulary 7 that are closed
under isomorphisms. We say that P; and P, are indistinguishable if for every e > 0 there
exists an N := N(e) € N such that the following holds for all n > N. For every
A € STRUC™ (1), if A has property Pj, then mrdist(A, P;) < € and if A has P, then
mrdist(A4, P;) < e.

Alon et al. [2] introduced the concept of indistinguishability and showed that it pre-
serves testability of graph properties. This is true even after the above extension to
relational properties.

Lemma 10. Let P, P, C STRUC(7) be indistinguishable properties with vocabulary 7.
Property Py is testable iff Py is testable.

The proof by Alon et al. [2] extends without difficulty.

4. Testable Classes

Next, we show that two well-known classes of first-order logic are testable. We begin
with Ackermann’s class with equality, the set of first-order sentences that have at most
one universal quantifier (and any number of existential quantifiers), before proceeding to
Ramsey’s class in Subsection 4.2.

10Explicitly, map A to an A’ with the same universe size, where y € r(S, R;) in A" if (%1,...,2;) € R;
in A. Note that we have not yet defined the assignments of tuples y with duplicate components. By
construction, the assignments of these tuples do not affect o’ and so any reasonable convention will do.
For example, for any predicate symbol symbol @Q of ¢’ and any tuple z that has at least one duplicate
component, we define z € Q. The resulting map is injective but not necessarily surjective.
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4.1. Ackermann’s Class with Equality

In this section we show that Ackermann’s class with equality ([3*V3*, all ]2) is testable.
We begin by reviewing the history of this class, which has a number of nice properties.

Ackermann’s class was first considered (without equality) by Ackermann [1], who
showed that the satisfiability problem for the class is decidable and that it has the
finite model property'!. Kolaitis and Vardi [30] showed the satisfiability problem for
Ackermann’s class with equality is complete for NEXPTIME and that a 0-1 law holds
for existential second-order logic'? where the first-order part belongs to [3*V3*, all]-.
Lewis [33] proved that satisfiability for Ackermann’s class without equality is complete
for (deterministic) EXPTIME. Grédel [24] showed that satisfiability for Ackermann’s
class without equality is complete for EXPTIME even with the addition of arbitrarily-
many function symbols.

If we allow equality and a unary function symbol, the result is Shelah’s class, which
Shelah [46] proved decidable. Shelah’s class is a decidable class that does not have the
finite model property, and it would be interesting to determine if it is testable. This
would require extending relational testing to allow function symbols.

Ackermann’s class with equality has been studied in other settings as well. For
example, Fermiiller and Salzer [14] used an extension of resolution to decide an extension
of Ackermann’s class with equality using automated theorem provers.

The main goal of this subsection is Theorem 11 below. Recalling Theorem 5, this also
implies that such properties are testable in the dist and rdist senses. If the vocabulary
consists of a single relation, the rdist and dist definitions are equivalent to the dense hy-
pergraph model. We therefore obtain the corresponding results in the dense hypergraph
and dense graph models as special cases.

We denote the set of monadic predicate symbols in a vocabulary 7 by M := {R; |
R; € 7 and a; = 1}. The set of assignments of the symbols in M for an element in a
universe is called the color of the element and there are 2/ possible colors. We define
Col(A, ) to be the set of colors that occur at least ¢ times in A.

Theorem 11. All formulae in [3*V3*, all]
sided error.

define properties that are in Tp, with one-

PROOF. Recall that Ackermann’s class with equality is [3*V3*, all |- and, therefore, it
suffices to show the testability of property P of type 7 = (R{*,..., R%?) defined by
formula ¢ := Jzi...3zx,Vy3Iz; ... 3z : ¥, where ¢ is quantifier-free. Note that a is
the number of leading existential quantifiers and b is the number of trailing existential
quantifiers. We can trivially test any ¢ that has only finitely-many models with a constant
number of queries and zero error, and so it suffices to assume that ¢ has infinitely-many

models.

1A class is said to have the finite model property if every satisfiable formula in the class has a finite
model. Classes without this property have infinity azioms, i.e., sentences with only infinite models.

127 class C of first-order logic has an associated 0-1 law if all existential second-order sentences
@ := 3C1 ...Cqev, where ¢ is a first-order sentence in C, have the property that the limit as n — oo
of the probability that a random structure of size n satisfies ¢ exists and is either 0 or 1. Recall that
the focus is on existential second-order because all of first-order admits a 0-1 law, see the references in
Kolaitis and Vardi [31].
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The class [3*V3*, all]= is of the form required by Lemma 8 above, and so it is mrdist-
testable iff it is rdist-testable. It therefore suffices to show that P is testable in the
rdist sense. We will show that the following is an e-tester in the rdist sense for P
on input A € STRUC™(r). Here, k := k(7,¢) is the number of elements queried and
N := N(p,T,¢) is a constant, both of which are determined below. Note the actual
number of queries in Step 2 is not exactly k, but rather a constant multiple of it depending
on 7. Finally, we explicitly give k := k(p, 7) below.

1. If n < N, query all of A and decide exactly whether A has P.

2. Uniformly and independently choose & members of the universe of A and query
all monadic predicates on the members in this sample. Let B be the observed
substructure.

3. Search over all A’ € STRUC"(7). Accept if an A’ is found such that A’ = ¢ and
Col(B,a + 1) C Col(4',a +1).

4. Otherwise, reject.

We will show that the tester accepts (with probability 1) if A = ¢ and rejects with
probability 2/3 if rdist(A4,P) > . We first show that if A = ¢, then the tester is
guaranteed to accept. Then, we will show in Lemma 13 that with probability at least
2/3, we get a “good” sample in Step 2. A sample is “good” if it contains at least (a+1)-
many distinct representatives of each color that occurs on at least an £/(2-2/M) fraction
of the elements of A. We then show that the tester is correct if it obtains a good sample,
and therefore rejects with probability at least 2/3 if rdist(A, P) > ¢.

We will now show that if A &= ¢, the tester will accept with probability 1. We begin
with Lemma 12.

Lemma 12. Let A be a model of ¢ such that #(A) > N and let

a;

k:=a+3b (a 4 oXin X5 (5 )“arj) +2Ml(q +1).
Then, there is an A" = ¢ such that #(A") = k and Col(A,a + 1) C Col(4’,a + 1).

PrOOF. Assume that N > k. The structure A is a model of ¢, and so there exists at
least one tuple of a elements (uq,...,u,) such that ¢ is satisfied when the existential
quantifiers bind u; to x;. We consider the x; and the substructure induced by them to
be fixed, and refer to this substructure as A,.

There are at most ko := a+ 9 =1 i (5 )ai™? many distinct structures constructed
by adding an element labeled y to A, when we include the structures where the label y
is simply placed on one of the z;. We let v < ko be the number of such structures that

occur in A and assume there is an enumeration of them.

For each of these v substructures there exist b elements, w1, ..., wp, such that when
we label w; with z;, the structure induced by (z1,...,%q, ¥, 21,...,25) models 1. We
construct A; ; for 1 <7 <3 and 1 < j < wvsuch that A; ; is a copy of the wy, ..., wy used

for the j-th structure. We connect each A; ; to A, in the same way as in A, modifying
assignments on tuples (A U A; ;).

For each wy, in A; j, we consider the case where y is bound to wy,. By construction the
substructure induced by (z1,...,Z.,y) occurs in A. We assume it is the g-th structure
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and use the elements of A; 11 mod 3,9 to construct a structure satisfying ¢». We modify the
assignments of tuples as needed to create a structure identical to that in A satisfying 1.
Note that by construction all of these assignments are of tuples that contain wj, and
at least one element from A;1 mod 3,y- The resulting structure, which we call Ay, is
a model of . Before this step we have not modified any assignments “spanning” the
“rows” A;; of Ay and so there are no assignments that we modify more than once.

However, there may be some color from Col(A,a+1) that does not appear a+1 times
in A;. We therefore add a new block, denoted A, of at most 2/™/(a + 1) elements which
consists of a+ 1 copies of each color from Col(A,a+ 1). Each of these colors occurred at
least a+ 1 times in A, and so for each such color C, there is an element ¢ in A with color
C such that ¢ is not part of A,. If the substructure induced by (A;,q) in A is the j-th
structure in our enumeration, then we do the following for each member p of A, that has
the same color as ¢. First, we make the substructure induced by (A, p) identical to that
induced by (A, q) in A. Next, we make the substructure induced by (p, A ;) identical
to that induced by ¢ and the corresponding z; in A. All of these modifications are on
tuples containing a p € A, and so we do not modify any tuples more than once. We call
this structure As.

Finally, so far we only have an upper-bound on the size of As while the lemma states
it to be exactly of size k. We therefore pad in the following simple way'3. We know that
N >k > 2/Mlg and so there is a color that occurs at least a+1 times in A. If #(A) < &,
we simply make an additional x — #(Az2) many copies of this color in A, and modify the
assignments of tuples containing these new elements in the same manner as above. The
resulting A’ has size x and satisfies the requirements of the lemma. O Lemma 12

For any sample B of A, it is true that Col(B,a + 1) C Col(A,a+ 1). If A = ¢, then
Lemma 12 implies that our tester will find an A’ satisfying the conditions of Step 3 and
will therefore accept. This holds for any sample B and so the tester will accept such A
with probability 1.

Next, assume that rdist(A, P) > e. In this case we must show that the tester rejects
with probability at least 2/3. First, we show that the tester obtains a “good” sample
with probability at least 2/3.

Lemma 13. There are constants k and N such that, with probability at least 2/3, the
tester obtains a sample that contains at least (a+1)-many distinct representatives of each
color in Col(A,en/(2 - 21M1)).

PROOF. The probability that any particular query misses a fixed color that occurs on at
least an /(2 - 21M1) fraction of A is at most (1 —&/(2-2/M)). Moreover, the probability
that we miss such a fixed color after k; independent queries is at most (1 —¢g/(2-2/M))k1,
There are at most 2/ such colors, and so the probability that a sample of k1 elements
fails to contain at least one representative of all such colors is at most

k1
gl (1 _ E/2

The |M]| is a constant, and we choose k; such that (a 4+ 1)p; is at most 1/6.

130ne could instead change the tester to search structures with size at most .
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Let k := (a + 1)k;. We will make k independent queries, and consider the total
sample as (a + 1) separate samples of size k1. All of these smaller samples will contain
at least one representative of every color in Col(A,en/(2-2!/M1)) with probability at least
1—(a+1)p; > 5/6. However, there is the possibility that some of these smaller samples
contain elements in common. We will choose N such that for n > N, the probability
that any particular element in the universe of A is chosen more than once is at most 1/6.
In particular, if #(A) = n and we define z¥ := z(x — 1)---(x — (y — 1)) = z!/(x — y)!,
then the probability that some element is queried more than once is

n! platDks
_ n@ Dk (1 — (a + 1)k;)! =1- nlat)k

p2:i=1

The sample size (a + 1)k; is a constant, and so we can choose N such that ps < 1/6 for
n>N.

The probability that the tester obtains a sample that contains at least (a 4+ 1)-many
distinct representatives of each color in Col(4,en/(2 - 21M)) is at least

1—(a+1)p1 —p2 >2/3.
O Lemma 13

Our goal is to show that if rdist (A, P) > ¢, then we reject with probability at least 2/3.
It is easier to show the contrapositive: if the tester accepts with probability strictly
greater than 1/3, then rdist(A4, P) < e.

If we accept a structure A with probability strictly greater than 1/3, then we must
accept it when we obtain a good sample. We construct a B such that B = ¢ and
rdist(A4, B) < ¢ from the A’ that the tester must find to accept. We begin with Lemma 14,
which we will use to “grow” smaller models.

Lemma 14. Let ¢ = dxy...3z,Vy3z1... 32y : ¥ be a formula with vocabulary T,
where ¢ is quantifier-free and A € STRUC(7) be such that A |= . Additionally, let
B € STRUC(r) be any structure containing A as an induced substructure such that
#(B) = #(A) + 1. If the additional element of B has a color that occurs at least a + 1
times in A, then we can construct a B' = ¢ by modifying at most a constant number of
non-monadic assignments in B.

PROOF. Structure B contains an induced copy of A and one additional element, which
we will denote by ¢. By assumption, A is a model of ¢ and therefore contains an a-tuple
(u1,-..,uq) such that the formula is satisfied when x; is bound to u;. In addition, there
are at least a+ 1 elements in A that have the same color as q. Therefore, there is at least
one such element p that is not one of the u;. We will make ¢ equivalent to p without
modifying any monadic assignments.

We begin by modifying the assignments as needed to make the structure induced
by (x1,...,%q4,q) identical to that induced by (x1,...,24,p). This requires at most
Dio1 2iey (4)a% ™7 = O(1) modifications, all of which are non-monadic. There must
be (v1,...,v) in A such that ¢ is satisfied when z; is bound to v; and y to p. We
modify the assignments needed to make the structure induced by (g, v1, ..., vs) identical
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to that induced by (p,v1,...,vy)'". This requires at most y_;_, Z;;l (Cz;i)barj =0(1)
modifications, all of which are non-monadic. The result has #(A) + 1 elements, models
¢ and was constructed from B by making a constant number of modifications to non-
monadic assignments. O Lemma 14

Let A be the structure that the tester is running on and A’ be the structure found in
Step 3 of the tester. As mentioned above, we will construct a B |= ¢ from A’ such that
B |= ¢ and rdist(A4, B) < e.

Note that there must exist at least one color in Col(A,en/(2-2M1)) and assume that
N is large enough that en/(2 - 21M1) > a 4 1. We first make a constant sized portion of
A identical to A’. This requires at most O(1)-many modifications to each relation. All
colors in Col(A,en/(2-2!M1)) occur at least a + 1 times in A’, allowing us to recursively
apply Lemma 14 and add the elements of A that have colors in Col(A, en/(2-2/M)). This
entails making O(1)-many modifications to non-monadic relations (and none to monadic
relations) at each step, for a total of O(n) modifications to the non-monadic relations.

Finally, we consider the elements of A that have colors occurring at most en/(2-2/MI)
times. There are at most 2/™! such colors and at most en/2 elements with these colors.
We change the monadic assignments on such elements as required to give them colors
contained in Col(A,en/(2-2/M)). This requires at most en/2 modifications to each of
the monadic assignments. We again recursively apply Lemma 14 to A, making O(1)
modifications to non-monadic assignments at each step. The resulting structure is B
and is such that B | ¢.

Finally, we show that rdist(A, B) < e. If R; is a monadic relation, then the i-th term
of the maximum in the definition of rdist (cf. Definition 10 above) is at most £/2 + o(1).
If R; has arity at least two, then the i-th term of the maximum is O(n)/Q(n?) = o(1).
All o(1) terms can be made arbitrarily small by choosing N (¢, 7, ) appropriately and so
we can assume that all terms are strictly less than €. The maximum is then strictly less
than € and so rdist(A, B) < ¢ as desired. OTheorem 11

4.2. Ramsey’s Class

In this section we revisit a result of Alon et al. [2] in the light of recent work by Austin
and Tao [8]. The main result is the testability of the full Ramsey’s class (i.e., removing
the restriction to undirected loop-free graphs). As we did for Ackermann’s class with
equality in Subsection 4.1, we begin by reviewing the history and properties of the class,
denoted [F*V*, all]_.

Ramsey’s class is also known as the Bernays-Schonfinkel-Ramsey class. Bernays and
Schonfinkel [9] proved the finite model property and that satisfiability is decidable for the
class without equality. Ramsey [38] extended these results to the class with equality as
part of a stronger result. Lewis [33] showed that satisfiability is NEXPTIME-complete
for Ramsey’s class and Kolaitis and Vardi [29] proved that a 0-1 law holds for existen-
tial second-order logic where the first-order part belongs to [3*V*, all]—=. Omodeo and
Policriti [36] have recently shown that the class is semidecidable for set theory.

The main goal of this subsection is Theorem 15 below. Recalling Theorem 5, this also
implies testability in the 7 and 7, senses. The proof of Theorem 15 follows the proof by
Alon et al. [2], and relies on a reduction to a strong result by Austin and Tao [8].

4 The case where v; = p can be handled by replacing v; with ¢ in (q,v1,...,vp).
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An outline of the proof is as follows. First, we show that all sentences in [3*V*, all |=
define properties which are indistinguishable from instances of a generalized colorability
problem. Next, we note that all such problems are hereditary and therefore testable
when mapped to the setting defined by Austin and Tao [8]. Finally, we show that this
implies testability under our definitions, giving the following.

Theorem 15. All sentences in [3*V*, all]= define properties in T

We begin the proof of Theorem 15 by defining a generalized colorability problem, as
did Alon et al. [2].

For any fixed set F' of structures with vocabulary 7, some positive number of colors c,
and functions that assign a color between 1 and ¢ to each element of each structure
in F, we define the F-colorability problem as follows. A structure A € STRUC(1) is
F-colorable if there exists some (not necessarily proper) c-coloring of A such that A does
not contain any induced substructures isomorphic to a member of F'. We let Pr be the
set of structures that are F-colorable.

For example, we can consider the case of graphs and let F' contain ¢ copies of Ky. We
enumerate these copies in some fashion from 1 to ¢, and for copy 4, color both vertices
with 4. The resulting problem is of course the usual (k- or equivalently) c-colorability.
The following is a straightforward generalization of the proof by Alon et al. [2].

Lemma 16. Let ¢ be any first-order sentence in the class [3*V*, all]l=. There exists
an instance of the F-colorability problem that is indistinguishable from P, the property
defined by .

PROOF. Let € > 0 be arbitrary and ¢ := Jz1...3x:Vy; ... Yy, : ¥ be any first-order
formula with quantifier-free ¢ and vocabulary 7. We note, as did Alon et al. [2], that
we can restrict our attention to formulae v where it is sufficient to consider only cases
where the variables are bound to distinct elements. This is because, given any 9’, we can
construct a i satisfying this restriction that is equivalent on structures with at least t4+u
elements, and the smaller structures do not matter in the context of indistinguishability.

Let P={A| A€ STRUC(7), A |= ¢} be the property defined by ¢. We now define
an instance of F-colorability that we will show to be indistinguishable from P. We denote
our c colors by the elements of

{(0,0)0}U{(a,b) |1 <a<m,1 <b<mgabeN}.

Here, 7 is the number of distinct structures of vocabulary 7 with exactly ¢ elements,
7y = 22i=1t"" | Similarly, we denote by 7o the number of ways it is possible to “connect”
or “add” a single element to some existing, fixed t-element structure of vocabulary 7, i.e.,
Ty 1= 22 i=1 Z?gl (afi)tar]. We will use fixed enumerations of these 7 structures with ¢
elements and 7, ways of connecting an additional element to a fixed ¢ element structure.

We impose on the coloring of the structure the following restrictions. Each can be
expressed by prohibiting finite sets of colored induced substructures.

(1) The color (0,0) may be used at most ¢ times. Therefore, we prohibit all (¢ + 1)-
element structures that are colored completely with (0,0).

15Note that introducing a constraint guaranteeing the existence of ¢ such elements cannot be done by
forbidding finite sets of structures, and would result in a non-hereditary property.
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(2) The graph must be colored using only {(0,0)} U {(a,b) | 1 < b < ma} for some
fixed a € {1,...,m1}. Therefore, we prohibit all two-element structures colored
((a,b), (a’, b)) with a # a'.

(3) We now consider some fixed coloring of a u-element structure V', whose universe
we identify with {v,...,v,}. We assume that this coloring satisfies the previous
restriction and that color (0,0) does not appear. We must decide whether to
prohibit this structure. In order to do so, we first take the fixed a guaranteed by
the previous restriction, and consider the t-element structure E, whose universe we
identify with {e,...,e;}, that is the ath structure in our enumeration of ¢ element
structures. We connect each v; to F in the following way. If v; is colored (a,b),

we use the bth way of connecting an additional element to a t-element structure
in our enumeration. We denote the resulting (¢ 4+ u)-element structure as M and
allow (do not prohibit) V' iff M is a model of ¢ when we replace x; with u; and y;

We now show that the resulting F-colorability problem is indistinguishable from P.
Recall the definition of indistinguishability (Definition 14) and assume that we are given
an A = ¢. Color the ¢ vertices existentially bound to the z; with (0,0). Then, we
can color all remaining vertices v; with (a,b), where a corresponds to the substructure
induced by {x1,...,2:} in our enumeration of ¢-element structures, and b corresponds to
the connection between v; and {z1,...,2:}. It is easy to see that this coloring satisfies
the restrictions of our F-colorability problem. We have not made any modifications to
the structure and so mrdist(4, Pr) =0 (i.e., A € Pp).

Next, we assume that we are given a structure with a coloring that satisfies our
restrictions. We will show that we can obtain a model of ¢ by making only a small number
of modifications. First, if there are less than ¢ elements colored (0,0), we arbitrarily
choose additional elements to color (0,0) so that there are exactly ¢ such elements. We
will denote these ¢ elements with {e1,...,e:}. Restriction (2) guarantees that all colors
which are not (0,0) share the same first component. Let a be this shared component.
We make the structure induced by {ei,...,e:} identical to the ath structure in our
enumeration of t-element structures, requiring at most »_;_, t* = O(1) modifications.
Next, for each element v; that is colored (a,b) with a,b # 0, we modify the connections
between v; and {ey,...,e;} in order to make these connections identical to the pth way
of making such connections in our enumeration. This requires at most

n-03 S [()t] = O(n)

i=1 j=1 J

additional modifications, all of which are to non-monadic subrelations. Binding x; to e;,
the resulting structure is a model of . We made at most O(1) modifications to monadic
subrelations and O(n) modifications to non-monadic subrelations, and so mrdist(A4, P) <
max{O0(1)/n,0(n)/Q(n?)} = o(1) < &, where the inequality holds for sufficiently large n.

Therefore, all such properties P are indistinguishable from instances of F-colorability,
as desired. (]

Recall that a hereditary property of relational structures is one which is closed under
taking induced substructures. F-colorability is clearly a hereditary property; if A is
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F-colorable, then so are its induced substructures. However, the definitions of Austin
and Tao [8] are significantly different from ours and so we explicitly reduce the following
translation in our setting to their result.

Theorem 17 (Translation of Austin and Tao). Let P be a hereditary property of
relational structures which is closed under isomorphisms. Then, property P is testable
in the sense of Ty with one-sided error.

Theorem 17 can be viewed as the latest in a series of generalizations of Alon et
al. [2] Corollary 6.3, i.e., the testability of colorability problems for undirected loop-
free graphs. The first such generalization was by Fischer [16], who extended the result
to more general colorability problems with counting restrictions. This was followed by
Alon and Shapira [6] who extended it to hereditary graph properties. Ishigami [25]
extended the testability result to hereditary partite uniform hypergraph properties, and
Ro6dl and Schacht [39] extended it to hereditary uniform hypergraph properties. These
generalizations are closely related to extensions of Szemerédi’s Regularity Lemma and
the Removal Lemma, see the references in Subsection 1.1.

Before reducing Theorem 17 to its statement in [8], we first briefly introduce their
definitions. All of the definitions in Subsection 4.2.1 are from Austin and Tao [8], although
we omit definitions which are not necessary for our purposes.

4.2.1. Framework of Austin and Tao
We begin by introducing their analogue of vocabularies: finite palettes.

Definition 15. A finite palette K is a sequence K := (Kj)j‘?‘;o of finite sets, of which
all but finitely-many are singletons. The singletons are called points and denoted pt. A
point is called trailing if it occurs after all non-points.

We will write K = (K, ..., K), omitting trailing points and call k the order of K.
We use the elements of K to color the j-ary edges in hypergraphs.

Definition 16. A vertex set V is any set which is at most countable. If V| W are vertex
sets, then a morphism f from W to V is any injective map f: W — V and the set of
such morphisms is denoted Inj(W, V). For N € N, we denote the set {1,..., N} by [N].

Of course, [N] is a vertex set. Our structures are finite so we are mostly interested
in finite vertex sets. Next, we define the analogue of relational structures.

Definition 17. Let V be a vertex set and K be a finite palette. A K-colored hypergraph
G on V is a sequence G := (G)32, where each G;: Inj([j], V) — Kj is a function. Let
KW) be the set of K-colored hypergraphs on V.

Only finitely many of the K; are not points, and so only finitely many G; are non-
trivial. The G; assign colors from K to the morphisms in Inj([j], V). In our relational
setting, this set of morphisms corresponds to the set of j-ary tuples (z1,...,z;) with
pairwise distinct components.

Before defining hereditary K-properties, we need one last technical definition.
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Definition 18. Let V,W be vertex sets and f € Inj(IW, V) be a morphism from W to
V. The pullback map K& : KV — KW) jg

(V@) (0)=¢i(so0).
for all G = (G;)52 € KV, j >0 and g € Inj([j], W)). f W C V and f € Inj(W, V) is
the identity map on W, we abbreviate

G Lwi: K(f)

Abusing notation, the pullback map K ) maps K-colored hypergraphs on V to those
on W, by assigning the color of f o g to g, for all tuples g. Note that G |y is equivalent
to the induced subhypergraph on W. For notational clarity, we reserve P for properties
of relational structures and use P to denote properties of hypergraphs.

Definition 19. Let K = (Kj)32, be a finite palette. A hereditary K-property P is an
assignment P: V — PWY) of a collection P(V) € K(V) of K-colored hypergraphs for
every finite vertex set V such that

K (7)(‘/)) c pW)
for every morphism f € Inj(W, V') between finite vertex sets.

Finally, we state the definition of (one-sided error) testability used by Austin and
Tao [8]. Here, for a vertex set V and ¢ € N, we write (Y) ={V' | V' CV,|V/| =¢} to
denote the set of subsets of V' with exactly ¢ elements.

Definition 20. Let K be a finite palette with order £ > 0 and P be a hereditary K-
property. Property P is testable with one-sided error if for every € > 0, there exists N > 1
and § > 0 satisfying the following. For all vertex sets V with |V| > N, if G € K()

satisfies ) v
HW|W€<N),GLW€P(W)H>1—5, (1)

[¢]

then there exists a G’ € P(V) satisfying

M‘{WWG<Z>,GLW#G/ LwH<s. (2)
k

To see that this is a variant of testability, it is easiest to consider the contrapositive.
If there is a G’ satisfying (2), then G is not e-far from P, using the implicit distance
measure based on the fraction of differing induced subhypergraphs of size k. If there is
no such G’ (i.e., G is e-far from P) and P is testable, then (1) must not hold. That is,
there are many induced subhypergraphs of size N that do not have P. The definition is
for hereditary P, and so if G has P, then so do all induced subhypergraphs. This allows
the construction of testers.

Finally, we can state one of the main results of Austin and Tao [8].
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Theorem 18 (Austin and Tao [8]). Let K be a finite palette and let P be a hereditary
K-property. Then, P is testable with one-sided error.

In the following subsection we will map our vocabularies, structures and properties
to this setting. We will then show that hereditary properties in our setting correspond
to hereditary properties (in the sense of Definition 19 above) here, and that testability
in the sense of this section (Definition 20) implies testability of the original relational
properties. That is, we explicitly reduce our translation (Theorem 17) to Theorem 18.

4.2.2. Reducing Theorem 17 to Theorem 18

We begin by mapping vocabulary 7 = {R}*, ..., R%} to a finite palette K, = (K;)2,.
We use the color of a “tuple” to represent the set of assignments on it. The difference
between the set of j-ary tuples over a finite universe U and Inj([j],U) is that the latter
does not permit repeated components. If S € SUB(R;") has |S| < a;, then the corre-
sponding subrelation consists of tuples with repeated components. We treat such S as
relations with arity |S| and no repeated components. Recall that &(n, k) is the Stirling
number of the second kind.

For a > 1, let P, := {R}"
arity a. We now define palette K. Let Ky := pt and K; := [223 IPil&(G0) | There are
finitely-many predicate symbols and so only finitely-many K; # pt.

Let S, := {Si | S € SUB(R{"),|S.| = a,1 < i < s} be the set of subtypes with
cardinality a for all a > 1. Now, 2!/ = |K,| and we have exactly enough colors to
encode the set of assignments of the a-ary subtypes on a-ary tuples.

We will now define a map h from relational structures A on universe U to hypergraphs
G4 e KU, For any S € S,, there is a bijection

r(SE): sY(SL) — {(21,...,24) | i € U,x; # x; for i # j}

from sY(S%) to the a-ary tuples without duplicate components, formed by removing
the duplicate components. That is, r(S!) maps (z1,...,24,) to (xi,...,x;,) where
1<i; <ig <...<i, <a;. We can now define G4 = h(A).

For j > 0, we define G;: Inj([j],U) — K as follows. Assign to f € Inj([j],U) the
color encoding the set of assignments of the subtypes S; on (f(1),..., f(j)), using the
inverses (r(S))”" to get assignments for subtypes of high-arity relations. For j = 0,
Inj([j],U) = 0 and Ky = pt and we can use a trivial map.

Of course, we extend the map to properties in the obvious way. If P is a property of
relational structures, we let P(V) := {h(A) | A € P}. Formally, we define P(U) := PU),
but there is a small technical point. We have identified finite universes with subsets of
the naturals, allowing us to call STRUC(7) a set. However, Definition 16 in this section
allows a vertex set to be any finite set and Definition 19 requires hereditary hypergraph
properties to be closed under bijections between vertex sets. To remedy this, for each
finite vertex set W, we fix a'® bijection ¢"V': W — {0,...,|W| — 1}. We then define
P := h(P) formally as

{p(W)7 W ={0,1,...,|W| -1}

R}" € 7,a; = a} be the set of predicate symbols with

POV =1 K6™) (pUoeaw =) | otherwise,

16Qur properties are closed under isomorphisms, so any fixed bijection is acceptable.
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Hereditary relational properties are mapped to hereditary hypergraph properties,
which are testable in the sense of this section (Definition 20 above) by Theorem 18.

Lemma 19. If P is a hereditary property of relational structures, then h(P) is a hered-
itary property of hypergraphs.

PROOF. Let P be a hereditary property of relational structures with vocabulary 7. As-
sume that P := h(P) is not a hereditary K-property. Then, by Definition 19 above,
there exist finite vertex sets V' and W, and a morphism f’ € Inj(W, V') such that

KD (PpWy g pW) (3)

Since f’ exists, Inj(W, V) cannot be the empty set and so V| > |W/|. Let Uy :=
{0,...,]V] = 1} and Uy := {0,...,|W| — 1}. By the definition of P, we can fix
bijections ¢V: V — Uy and ¢W: W — Upy such that P(V) = k(") (P(UV)) and
P = k(o) (PWw)). By the definition of P = h(P), this implies

KW (K(gv) (p(Uv))) i K") (p(Uw)) )
Bijections are invertible, and so this implies

K(gVOfO(gW)_l) <7)(Uv)) g pUw)

Rename f':=g" o fo (gw)fl and note f’ € Inj(Uw,Uy). Let A’ € PUv) be such that
KU Ay ¢ pUw),

We defined P as h(P) for a hereditary property P of relational structures. Property
P is closed under isomorphisms, and so there is an A := h=1(A’) € PN STRUC!YVI(7)
such that the |Uw |-element substructure induced by {a | a = f/(u) for some u € Uy}
does not have P. This contradicts the hereditariness of P and so P must be hereditary
in the sense of this section (Definition 19). O

We mapped hereditary relational properties to hereditary hypergraph properties,
which are testable by Theorem 18. We will show this implies testability of the origi-
nal properties.

Definition 21. Let A, B € STRUC™(7) be structures with vocabulary 7 and universe
U :=1{0,...,n—1} of size n, k := max; a; be the maximum arity of the predicate symbols,
and h: STRUC" (1) — KU) be the map defined above. The h-distance between A and
Bis ) U

al

We now relate the two distances with the following simple lemma.

Lemma 20. Let A, B € STRUC™(7) be relational structures with vocabulary T and size
n. Then, hdist(A, B) > mrdist(4, B).
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PROOF. Assume that mrdist(A, B) = e. Then, there exists a predicate symbol R} € 7
and subtype S € SUB(R{") such that |s*(S) A sB(S)| /(n!/(n —|S)!) = e. Let k :=
max; a; and let the universe of both structures be U,, :={0,...,n — 1}.

Consider a random permutation of the universe (i.e., a bijection r: U,, — U,,) chosen
uniformly from the set of such permutations. The probability that the substructures
induced on {r(0),...,7(k — 1)} differ in A and B is hdist(A, B). The probability that
the tuple of the first |S| elements, i.e. (r(0),...,7(|S| — 1)), differ in s4(S) and sB(9) is
¢ and so hdist(A, B) > e. O

Equality is obtained when |S| = k. It is possible to show that the two distances
differ by at most a constant factor, and so the corresponding notions of testability are
essentially equivalent. However, Lemma 20 suffices for our purposes.

Lemma 21. Let P C STRUC(7) be a property of relational structures which is mapped
by h to a property of hypergraphs that is testable with one-sided error. Then, P is testable
with one-sided error.

PROOF. Let P := h(P) be the hypergraph property which P is mapped to. We show that
the following is an e-tester for P with one-sided error. Let N > 1, § > 0 be the constants
of Definition 20 above for €. Assume that we are testing a structure A € STRUC™ (1)
and recall that U = {0,...,n — 1}.

1. If #(A) < N, query the entire structure and decide exactly whether A € P.
2. Otherwise, repeat the following ¢(d) times.

(a) Uniformly select N elements and query the induced substructure.

(b) If it has P, continue. Otherwise, reject.
3. Accept if all of the induced substructures had P.

If A € P, then all induced substructures have P because P is hereditary and the
tester accepts with probability 1. Next, assume mrdist(A, P) > . We use Definition 20
above to show the tester will find a witness for A ¢ P with probability at least 2/3. By
Lemma 20, hdist(A, P) > mrdist(4, P) > ¢. We assumed h(P) is hereditary, and so (by
Theorem 18) it is testable in the sense of Definition 20. The probability that a uniformly
chosen N-element substructure does not have P is at least §. We use ¢(9) to amplify the
success probability from § to 2/3. O

This completes the proof of the testability of Ramsey’s class (Theorem 15). All prop-
erties expressible in Ramsey’s class are indistinguishable from instances of F-colorability.
Indistinguishability preserves testability and so it sufficed to show that these instances
are testable. All instances of F-colorability are hereditary relational properties, which
are testable by Theorem 17, which we reduced to the statement by Austin and Tao [§].

5. Untestable Classes

We now shift our attention to untestable classes. As mentioned in Subsection 1.2,
Alon et al. [2] proved that there exists an untestable property of undirected, loop-free
graphs expressible with quantifier prefix V235, We simplify their untestable exam-
ple and thereby show that the classes [v33,(0,1)]=, [v?3V, (0,1)]=, [V3v2,(0,1)]= and
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[V3V3, (0,1)]= are untestable. The focus on graphs is justified by recalling that monadic
first-order logic is testable. We begin by briefly reviewing other properties of these classes.

The class [v33,(0,1)] (usually without equality) is well-known in the literature. It
is trivial to prove that this class does not have the finite model property. In addition,
Kolaitis and Vardi [30] showed that a 0-1 law does not hold for second-order existential
logic when the first order part is in this class (even without equality). However, it is
an essentially finite class (i.e., it can only express a finite number of properties) and
therefore decidable.

The other classes of this section contain the well-known class [V3V, (0,1)], which is
a subclass of the Kahr-Moore-Wang [28] class. We have recently shown that there are
untestable graph propertie in this class, see Jordan and Zeugmann [27]. It is again trivial
to prove that [V3V, (0, 1)] does not have the finite model property. Veds [50] showed that
a 0-1 law does not hold for second-order existential logic when the first-order part is in
this class (again, even without equality). However, as above, all classes in this section
are essentially finite and therefore decidable.

We will begin by defining property P, which is essentially the graph isomorphism
problem for undirected loop-free graphs encoded in directed graphs that may contain
loops. We will begin by showing in Lemma 23 that P is indistinguishable from property
Py (cf. Definition 23 below) which is expressible in any of the prefix vocabulary classes
mentioned in Theorem 22 below. We will then show that P is not testable. Indistin-
guishability preserves testability and so this implies that Py is also untestable, which will
suffice to show the following theorem.

Theorem 22. The following prefix classes are not testable:

1. [vav3, (0,1))=
2. [V3av2,(0,1)]=
3. V23, (0,1))=
4. [v33,(0,1)]=

We define property P as follows. First, a graph that has property P must consist
of an even number of vertices, of which exactly half have loops. The subgraph induced
by the vertices with loops must be isomorphic to that induced by the vertices without
loops, ignoring all loops, and there must be no edges connecting the vertices with loops
to those without loops. Finally, all edges must be undirected (i.e., an edge from = to y
implies an edge from y to x). We refer to such undirected edges as paired edges.

Definition 22. A graph G € G" has P iff the following conditions are satisfied:

1. For some s, n = 2s.

2. There are exactly s vertices z satisfying E(z,x). We will refer to the set of such
vertices as H; and to the remaining s vertices as Hs.

3. The substructure induced by H; is isomorphic to that induced by Hs when all loops
are removed. That is, there is a bijection f from H; to Hs such that for distinct
x,y € Hy, it is true that G = E(x,y) iff G = E(f(z), f(y)).

4. There are no edges between Hy and Hs.

5. All edges are paired.
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Graph isomorphism is not directly expressible in first-order logic, and so we use the
following encoding where the bijection f is made explicit by adding n edges between H;
and H,. This of course reduces the complexity from the level of finding an isomorphism
to the level of checking a given one, in order to achieve first-order expressivity. However,
it maintains hardness for testability: essentially, our samples are too small to see any
part of the given isomorphism.

Definition 23. A graph G € G" has Py iff the following conditions are satisfied:

1. For every vertex z, if E(x,z) then there is an edge from z to exactly one y such
that =E(y,y).

2. For every vertex x, if ~E(x,z) then there is an edge from x to exactly one y such
that E(y,y).

3. For all vertices z and y, E(x,y) iff E(y, x).

4. For all vertices 1,22, 23,24 that are pairwise distinct, if E(xzq,21), “E(x2,x2),
E(x3,x3), "E(x4,24), E(x1,22) and E(x3,x4), then E(zq,x3) iff E(za,x4).

Expressing Conditions 1 and 2 as “there is at most one such y” and “there is at least
one such y,” Py can be expressed in each of the classes [V3v3, (0,1)]=, [V3V2,(0,1)]=,
[V23V, (0,1)]= and [V33,(0,1)]=.

For example, in the class [V33, (0,1)]—, we can express Py by

Va1VasVaeydrs : [

((BE(z1,21) <> =E(z2,22)) A E(z1,22)) A

[( (E(z1,21) ¢ E(zs3,23)) A (E(zs3,x3) ¢ E(x4,24)) A
E(zq1,23) A E(x17x4)) — 23 = 334] A

(E(xl,xg) — E(xg,xl)) A

( [E(z1,21) N E(x3,x3) N @1 # 23 A E(x4,24) A E(23,24)] =

(~E(z2,x2) A E(z1,22) A (E(z1,23) < E(xo,74))) )} .

To express Py with prefixes V23V and V3V2, it suffices to reorder the quantifiers (keep-
ing xo existential and z first). The prefix V3V3 requires a few additional modifications.

The two properties P and Py differ only in the edges which make the isomorphism
explicit in P; but are forbidden in P. There are at most n such edges, none of which are
loops. This suffices to prove the following.

Lemma 23. Properties P and Py are indistinguishable.

PROOF. Let ¢ > 0 be arbitrary and let N. = e~'. Assume that G is a structure that
has property P and that #(G) > N,. We will show that mrdist(G, Py) < e.

Structure G has P and so there is a bijection f satisfying Condition 3 of Definition 22.
For all z € Hp, we add the edges E(x, f(z)) and E(f(x),z) and call the result G’
Property Py differs from P only in that the isomorphism is made explicit by the edges
connecting loops and non-loops, and so G’ has P;. Indeed, it satisfies Conditions 1
and 2 of Definition 23 because G had no edges between loops and non-loops and we have
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connected each to exactly one of the other, following the bijection f. Next, G’ satisfies
Condition 3 of Definition 23 because G satisfied Condition 5 of Definition 22 and we added
only paired edges. Finally, G’ satisfies Condition 4 of Definition 23 because the edges
between loops and non-loops follow the isomorphism f from Condition 3 of Definition 22.

We have added exactly n (directed) edges, none of which are loops and so we have
mrdist(G, P) < mrdist(G,G’) = 0 + n/n? < e, where the inequality holds for n > N..
The converse is analogous; given a G that has property Py, we simply remove the n edges
between loops and non-loops after using them to construct the isomorphism f. O

Properties P and Py are indistinguishable. We saw in Section 3 that testability
is preserved by indistinguishability (cf. Theorem 10) and thus showing that P is not
testable suffices to prove that Py is not testable (and therefore Theorem 22). The proof
closely follows that of Alon et al. [2]. The crucial lemma is the following, a combination
of Lemmata 7.3 and 7.4 from Alon et al. [2]. We use count g (T") to refer to the number of
times that a graph T occurs as an induced subgraph in H. A bipartite graph is a graph
where we can partition the vertices into two sets Hy and Hs such that there are no edges
“internal” to the partitions. That is, for all x1,y; € Hy and o, y2 € Ha, ~F(x1,y1) and
—E(x2,y2). See Jordan and Zeugmann [26] for an explicit proof of the following, which
is somewhat technical and long.

Lemma 24 (Alon et al. [2]). There exists a constant €’ > 0 such that for every D €
N, there exist two undirected bipartite graphs H = H(D) and H' = H'(D), and a num-
ber t satisfying the following conditions.

1. Both H and H' have a bipartition into classes Uy and Us, each of size t.

2. In both H and H', for all subgraphs X with size t/3 < #(X) < t, there are more
than t2/18 undirected edges between X and the remaining part of the graph.

3. The minimum degree of both H and H' is at least t/3.

4. dist(H,H') > ¢’.

5. For all D-element graphs T, county (T) = count g/ (7).

It is worth noting that the above is for undirected, loop-free graphs. However, bipar-
tite graphs never have loops and “undirected” in our setting results in paired edges. It is
easy to show that if two structures agree on the counts for all size D induced subgraphs,
they agree on the counts for all induced subgraphs of size at most D. This is done by
applying the following lemma inductively.

Lemma 25. Let H and H' be two graphs, both of size s, and let 2 < D < s. If for
every graph T of size D, county (T') = county/(T'), then for every graph T’ of size D —1,
count g (T) = count g (T).

PROOF. Assume H and H' satisfy the initial conditions of Lemma 25, but that there
exists a T” of size D — 1 such that county (T") # county (T"). Let C = {T | #(T) =
D and T contains T” as an induced subgraph}.

Note that ), county (1) countr(T") = county (7”)(s — D + 1) and likewise for
> rec countg (T) countr (T”). We have assumed that H and H' satisfy county (T) =
county/ (T') for T € C, but county (1”) # county:(T"), giving a contradiction and the
Lemma follows. ]
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Lemma 26. Property P is not testable.
PROOF. Assume that P is testable. Then, there exists an e-tester for
£ :=min{e'/8,1/144},

where ¢’ is the constant from Lemma 24 above. We can assume without loss of generality
that the tester queries all edges in a random sample of D := D(e) vertices.

Consider the graph G which contains two copies of the H = H(D) from Lemma 24,
where one of the copies is marked by loops on each vertex and there are no edges between
the copies. This graph has property P, and so the tester must accept it with probability
at least 2/3. Next, consider the graph G’ which contains one copy of H marked by loops
and one copy of H', again where there are no edges between the two (induced) subgraphs.
Graph G’ is such that dist(G’, P) > ¢ (cf. Lemma 27 above) and so it must be rejected
with probability at least 2/3. Both G and G’ consist of two bipartite graphs, each of
which has a bipartition into two classes of size t, and so #(G) = #(G’) = 4t.

However, G and G’ both contain exactly the same number of each induced subgraph
with D vertices. This is because both have loops on exactly half of the vertices and
the two halves are not connected by any edges. Some of the D vertices must be in the
first copy of H and the others in the second H (resp. H'). By Lemma 25 above, H
and H’' contain the same number of each induced subgraph with size at most D. The
tester therefore obtains any fixed sample with the same probability in G and G’ and is
unable to distinguish between them. Hence, it is unable to accept G with probability 2/3
and also reject G’ with probability 2/3. This completes the proof, taking into account
Lemma 27 below. (]

Recall that testing is easiest under the dist definition, and so Lemma 26 also implies
P is not testable under other definitions.

Lemma 27. The graph G’ is such that dist(G’, P) > ¢.

PROOF. Suppose that dist(G’, P) < e. Then, there is an M € P such that dist(G’, M) <
€. Let M7 be the set of vertices with loops in M and let M5 be the set of vertices without
loops. We will refer to the subgraph induced by the vertices with loops in G’ as H and
to that induced by those without loops as H’. Without loss of generality, assume that
|Mi N H| > |M;NH'|. Then, |M;NH| >t We let a; be the set M;\H and «s be
M5\ H'. Note that |a1| = |ag| and |a;| < t because | My N H| > t.

Informally, M is formed by moving the vertices oy from H' to H and the vertices ao
from H to H’, and then possibly making other changes. There are three cases, which we
will consider in order.

1. |C¥1| =0.

2. Joy| > t/3.

3. 0 < o] <t/3.

If |a1| = 0, then we can construct M from G’ without exchanging vertices between

H and H’', and in particular, construct H’ from H (ignoring loops), by making less than
£(4t)? modifications. However, dist(H, H') > &' by Lemma 24 above and so this must
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require at least ¢’(2t)? modifications. By definition, ¢ < &’/4 so e(4t)? < &/(2t)2. The
first case is therefore not possible.

Recall that |a1| < t. If |ag] > t/3, then by Condition 2 of Lemma 24 there exists at
least t2/18 undirected edges between a; and H'\«y and between ap and H\ao. All of
these edges must be removed to satisfy P because each would connect a vertex with a
loop to a vertex without a loop. Therefore,

: /
dist(G', M) > ()2
But, ¢ < 1/72 and so the second case is not possible.

Therefore, it must be that 0 < |a1| < t/3. Here, we will show that it must be
the case that «; and as are relatively far apart. If they are not far apart, then it is
possible to modify them instead of swapping them. This essentially results in the first
case considered above. Condition 3 of Lemma 24 requires that each vertex has relatively
high degree. These edges can be either internal to «; (resp. ag) or connecting a; (z)
with H'\oy (H\az). If oy and g are relatively far apart, then we will see that this
forces too many edges “outside” of ay (resp. aw), resulting in a similar situation to the
second case considered above.

We have assumed that dist(G’, M) < ¢ and that we can construct M from G’ by
making less than £(4¢)? modifications if we move oy to H and ay to H'. This entails the
following modifications.

1. Removing all edges connecting o to H'\ ;.

Removing all edges connecting as to H\«s.

Adding any required edges between oy and H\s.
Adding any required edges between as and H'\«;.
Changing «y, as, H\ay and H'\«; to their final forms.

Ot W

We can assume that the total number of modifications is less than e(4¢)%. It must
be that dist(aq,as)|ar|?/(4t)? + & > €'/4. If this does not hold, then we could first
modify a; to make it identical to as and then make H' identical to Ms. Next, My is
identical to M;, which we could make identical to H. This would require less than &’ (2t)?
modifications, which would violate Lemma 24. Therefore,

16(’ /4 — &)t2

dist(aq, >
ist(aq, ) > e

(4)
If both a7 and ay are complete graphs then they cannot be far apart. Given that all
vertices in oy (ag is analogous) have degree at least t/3, then there must be at least

laq|(t/3 — |aa| + 1) +2r

edges connecting ay to H'\a, where r is the number of edges internal to «; that must
be omitted to satisfy (4). The simple lower bound on r, the number of edges needed for
two graphs with at most r edges to be dist(a, ag)-far, that follows from dist(aq, as) <
2r /| |? is sufficient. Finally, combining this with Inequality (4) yields

r > 8(e'/4—e)t?. (5)
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The number of edges connecting a1 to H'\«;y is therefore, by (5), at least
loaa|(t/3 — |aq| +1) +16(e /4 — e)t* > 16(c'/4 — e)t?.
All of these edges must be removed to move oy (resp. as), and so

) 16(c’ /4 — e)t? e
dist(G', M) > —— -~ — = _ ¢,
ist(G', M) > (a2 1 ¢
We have defined e < &’/8 and so dist(G’, M) > ¢, a contradiction.
The cases are exhausted and so dist(G’, P) > ¢ as desired. O

6. Conclusions

We have focused on the testability of prefix-vocabulary classes of first-order logic,
extending work that was initiated by Alon et al. [2]. Alon et al. [2] showed that all
properties of undirected, loop-free graphs expressible in first-order sentences with quan-
tifier pattern 3*V* are testable, while there exists an untestable property expressible
with quantifier pattern V*3*. Their proof of the latter result implies upper bounds of
twelve, five and seventeen for the minimum number of universal, existential and total
quantifiers, respectively, sufficient to express an untestable property. One of our goals
was to optimize these bounds and find the minimum number of universal and existential
quantifiers, as well as quantifiers in total, sufficient to express an untestable property.
Our results imply that these minima are two universal, one existential and three total
quantifiers, respectively. In addition, we remove the restriction to undirected, loop-free
graphs and focus on relational structures.

Our main results are as follows. First, we proved that all properties expressible in
Ackermann’s class with equality ([3*V3*,all]=) are testable. Then, we extended the
positive result of Alon et al. [2] from undirected, loop-free graphs to relational structures
by using a result from Austin and Tao [8]. This answers a question of Fischer [16] on the
testability of hypergraph properties expressible with quantifier pattern 3*v*, although
much of the work for this case is by Austin and Tao [8]. Finally, we simplified the
untestable property of Alon et al. [2] and showed that there are untestable properties of
directed graphs expressible with quantifier prefixes V33, ¥23v, V3?2, and V3vV3. Recently,
we have shown in Jordan and Zeugmann [27] that there are untestable properties of
directed graphs expressible with prefix V3V, improving on three of these prefixes.

The current classification of prefix-vocabulary classes for testability is the following.

e Testable classes

1. Monadic first-order logic: [all, (w)]=.
2. Ackermann’s class with equality: [3*V3*, all]-.
3. Ramsey’s class: [F*V*, all]_.
e Untestable classes
1. [v33,(0,1)]=.
2. [Vav, (0,1)]=.
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It is interesting to compare this classification for testability with known (complete)
classifications for other properties. For example, the current classification for testability
is consistent with the classifications for the finite model property (see, e.g., Chapter 6 of
Borger et al. [11]), for docility!” (see Kolaitis and Vardi [31]) and for 0-1 laws for frag-
ments of existential second-order logic (see Kolaitis and Vardi [31]). These classifications
may be helpful in providing guidance in the classification for testability.

This similarity between classifications may indicate a deeper connection between these
seemingly distinct properties. We would like to know which (if any) of the traditional
classifications coincides with the classification for testability, and hope to understand the
connections between testability and other properties of prefix classes.

As concrete open problems, we are especially interested in the testability of [v3V, (0, 1)]
and [v33,(0,1)] (without equality) and variants of the Gédel class (i.e., classes whose
prefix contain at least ¥23). Determining the testability of these classes may suffice to
complete the classification for the special case of predicate logic with equality.

There are also many possible variations of the classification for testability. For exam-
ple, one could be more interested in classes which are constructively testable, i.e., where
it is possible to compute an e-tester given € and a formula from the class. However,
in the present paper we are fortunate that many of the possible classifications coincide.
Namely, all of our positive results are for constructive (and therefore uniform) testability
in the most-restricted model (7y,,) that we consider, while all of the negative results hold
even for non-uniform testability in the least-restricted model (7).
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