
Non-CNF QBF Solving with QCIR

Charles Jordan
Graduate School of

Information Science and Technology
Hokkaido University

Will Klieber
Software Engineering Institute

Carnegie Mellon University

Martina Seidl
Institute for Formal Models

and Verification
Johannes Kepler University Linz

Abstract

While it is empirically confirmed folklore that conjunc-
tive normal form (CNF) is not the ideal input format for
QBF solvers, most tool developers and therefore also
the users focus on formulas in this restricted structure.
One important factor for establishing non-CNF solving
is the input format. To overcome drawbacks of available
formats, the QCIR format has recently been presented.
The QCIR format is a circuit-based input format for
quantified Boolean formulas which supports structure
sharing. In contrast to previous formats, the representa-
tion is very compact, yet still easy to parse and to read
for the human user.
In this paper, we analyze the QCIR format in detail
and provide tools and benchmarks which, we hope, will
make its usage attractive and motivate tool developers
to support this format as well as users to formulate their
encodings in this format.

Introduction
SAT solvers have made tremendous advances in recent
years, and are now widely used in applications as general-
purpose NP solvers (Biere et al. 2009). However, there are
many applications where PSPACE-complete problems must
be solved and (assuming PSPACE 6= NP) these problems
cannot be represented as compact SAT encodings. Anal-
ogous to SAT solvers and NP, QBF solvers can serve as
general-purpose PSPACE solvers.

Quantified Boolean formulas (QBF) extend propositional
formulas by allowing explicit quantification (∃,∀) over the
propositional variables (Kleine Büning and Bubeck 2009).
The problem of determining whether a particular QBF holds
is complete for the complexity class PSPACE, making them
a promising host language for encoding and solving many
important problems from verification and artificial intelli-
gence (see (Benedetti and Mangassarian 2008) for a survey).
Recently, there has been significant progress in QBF in de-
veloping fast, practical QBF solvers (see for example, the
recent report on the QBF Gallery (Lonsing, Seidl, and Van
Gelder 2015)), but QBF solvers have not reached the same
level of adoption as SAT solvers so far.

QBF tools have inherited the tradition of usually re-
quiring formulas to be in conjunctive normal form (CNF)
from SAT solvers. A propositional formula is in CNF

if it is a conjunction of clauses. A clause is a disjunc-
tion of literals and a literal is a variable or a negated vari-
able. Additionally, QBFs have a quantifier prefix which
fixes the quantifier type of the variables occurring in the
CNF. This formula structure is called prenex conjunctive
normal form (PCNF). Any formula of arbitrary structure
can be efficiently encoded in PCNF by introducing auxiliary
variables—called Tseitin variables—which avoid an expo-
nential blowup (Tseitin 1983).

However, this tradition of using normal forms limits the
information available to the QBF solvers which might nega-
tively impact the solving process. In contrast to SAT, where
satisfiability checking problems have to be solved, a QBF
solver has to solve validity checking problems (depending
on the variable quantification) as well which is biased by
restrictive structure of the CNF.

Therefore, the QCIR format (QBF Gallery 2014) was
developed during the last QBF Gallery events. However,
tools and benchmarks are not yet widely available—leading
to the cycle that tools and applications do not support QCIR
because it is not yet in common use. In this paper we present
application benchmarks and synthetic benchmarks in QCIR,
as well as tools that utilize QCIR. We hope that this serves
to establish QCIR as the standard format for non-CNF QBF.

This paper is structured as follows. First, we introduce
the QCIR format in detail, compare it to older formats, and
give some motivation for why it is important to have a non-
CNF format for QBF. Next we present a set of benchmarks
stemming from reduction finding tasks. Then we introduce
a fuzzer for the QCIR format which randomly generates
QCIR formulas. In the context of CNF solving, such formu-
las are successfully used in the solver development process,
and this practice be easily lifted to the non-CNF case. We
consider some first experiments with our newly generated
benchmarks before concluding with an outlook.

The QCIR Format
Currently, the standard input format for QBF is QDI-
MACS1, which has been used since the very earliest QBF
competitions organized a decade ago (e.g., (Narizzano,
Pulina, and Tacchella 2006)) and is still the input format of
the main tracks of the recent competitions. It is supported by

1http://www.qbflib.org/qdimacs.html

property QDIMACS boole qpro QCIR
prefix operators – X X
non-CNF X X X
non-NNF X X
non-PNF X X X
structure sharing X
xor X
ite X
resource alloc. X ∼
textual var. names X X

Table 1: Comparison of QBF input formats

most state-of-the-art QBF solvers and therefore most appli-
cations which aim at using a QBF solver generate formulas
in QDIMACS format.

In order to establish non-CNF formats, several efforts
have been taken. One of the first attempts was the boole2

format. It offers an infix representation which is very natu-
ral to the human user, but imposes some challenges with the
processing. To overcome some of the issues the qpro3 for-
mat was introduced which restricted itself to negation nor-
mal form (NNF) but allowed arbitrary positions of quan-
tifiers within the formula tree. Neither of these formats,
however, supports structure sharing and special gates like
if-then-else (ite) or xor. For an overview see Table 1.

To overcome the drawbacks of the available formats, the
QCIR (Quantified CIRcuit) format was introduced as a joint
community activity in the context of the QBF Gallery 2013.
It was then refined and proposed as input format for the
structural track of the QBF Gallery 2014, but unfortunately
this track was canceled as not enough participating solvers
were submitted to organize an interesting competition.

The format supports different variants of QBFs. Basi-
cally, gates are defined which are then used in the definitions
of other gates. Various kinds of gates like and, or, ite,
and xor gates are supported. Furthermore, there are special
quantifier gates which allows to position quantifiers at any
position in the formula. The definition of the gates also en-
ables structure sharing, because a label of a gate may occur
in arbitrarily many other definitions of gates. The detailed
grammar of QCIR formulas is shown in Figure 1. The first
line of a QCIR file is the format identifier (“#QCIR-14”),
and any other line that starts with “#” is a comment.

As non-CNF formulas in prenex format suffice for many
applications, the grammar in Figure 1 includes a convenient
syntax (qblock-prefix) for specifying a quantifier prefix with-
out the explicit introduction of quantifier gates. Figure 2
shows the general form of a formula in prenex form. An
example of a prenex formula is shown in Figure 3.

The QCIR format requires that gate variables be defined
before they are used in the definition of another gate. E.g., if
the gate definitions include “g1 = and(v1, v2)” and
“g2 = or(g1, v3)”, then the definition of g1 must
come before the definition of g2. Note that this require-

2http://www.qbflib.org/boole.html
3http://www.qbflib.org/format_qpro.pdf

qcir-file ::= format-id qblock-prefix output-stmt
(gate-stmt nl)∗

format-id ::= #QCIR-14 nl
qblock-prefix ::= (free(var-list)nl)? qblock-quant∗

qblock-quant ::= quant(var-list)nl
var-list ::= (var,)∗ var
lit-list ::= (lit,)∗ lit | ε

output-stmt ::= output(lit)nl
gate-stmt ::= var = and(lit-list)

| var = or(lit-list)
| var = xor(lit, lit)
| var = ite(lit, lit, lit)
| var = quant(var-list; lit)

quant ::= exists | forall
var ::= (A string of ASCII letters, digits,

and underscores)
lit ::= var | -var
nl ::= newline

Figure 1: Grammar of QCIR input format

#QCIR-14

quant(var, . . ., var)
...
quant(var, . . ., var)

output(lit)

var = gate exp
...
var = gate exp

Figure 2: Structure of QCIR formula in prenex form

#QCIR-14
forall(v1)
exists(v2, v3)
output(g3)
g1 = and(v1, v2)
g2 = and(-v1, -v2, v3)
g3 = or(g1, g2)

∀v1.∃v2.∃v3. (v1 ∧ v2)︸ ︷︷ ︸
g1

∨ (¬v1 ∧ ¬v2 ∧ v3)︸ ︷︷ ︸
g2︸ ︷︷ ︸

g3

Figure 3: Example of QCIR formula in prenex form

[[x]] =



x if x is a quantified or free variable
¬[[z]] if x is -z
[[z1]] ∧ . . . ∧ [[zn]] if x is defined as “x = and(z1, ..., zn)”
[[z1]] ∨ . . . ∨ [[zn]] if x is defined as “x = or(z1, ..., zn)”
([[z1]] ∧ ¬[[z2]]) ∨ (¬[[z1]] ∧ [[z2]]) if x is defined as “x = xor(z1, z2)”
([[z1]] ∧ [[z2]]) ∨ (¬[[z1]] ∧ [[z3]]) if x is defined as “x = ite(z1, z2, z3)”
∃z1 . . . ∃zn. [[g]] if x is defined as “x = exists(z1, ..., zn; g)”
∀z1 . . . ∀zn. [[g]] if x is defined as “x = forall(z1, ..., zn; g)”

Figure 5: Semantics of QCIR format

#QCIR-14
output(g5)
g1 = xor(x, z)
g2 = exists(x; g1)
g3 = xor(z, g2)
g4 = and(g2, g3)
g5 = forall(z; g4)

g5︷ ︸︸ ︷
∀z.

g4︷ ︸︸ ︷
(∃x. x⊕ z︸ ︷︷ ︸

g1

)

︸ ︷︷ ︸
g2

∧ (z ⊕ (∃x. x⊕ z︸ ︷︷ ︸
g1

)

︸ ︷︷ ︸
g2

)

︸ ︷︷ ︸
g3

Figure 4: Example of a non-prenex QCIR formula

ment ensures that the circuit graph is acyclic. A tool that
accepts QCIR should abort with an error if a gate is used
before being defined or if a gate is defined more than once.

It may be noted that QCIR allows and and or gates with
zero arguments; as expected, these correspond to the truth
values true and false, respectively.

The semantics of a QCIR formula is relatively straight-
forward. For a gate literal x, let [[x]] denote the formula that
x represents. (If x is a non-gate variable, then [[x]] is just x
itself.) Figure 5 gives the semantics for gate definitions. A
QCIR file as a whole represents the formula represented by
the literal specified on the output line, prefixed with the
quantifier prefix specified by qblock-prefix.

An example of a formula in non-prenex form is shown
in Figure 4. This formula has two features which, although
not forbidden by the QCIR grammar, may be difficult for
solvers to handle: (1) a variable (here x) is quantified more
than once, and (2) a quantified gate occurs negatively in the
formula (i.e., occurs inside a negation, inside an xor gate,
or inside the first argument of an if-then-else gate). It is ex-
pected that some non-prenex solvers may declare that they
do not handle formulas with either of these features. There-
fore, the more restricted cleansed variant of the QCIR for-
mat has been introduced.

In addition to closed formulas (in which all variables are
bound by quantifiers), QCIR also supports open formulas
which contain free variables. QCIR requires that all free
variables be declared on the free line of the quantifier pre-
fix. A solver supporting open formulas returns a proposi-
tional formula that is logically equivalent to the input QBF.
The QCIR format can be used to encode this output propo-
sitional formula.

At the moment, there are two solvers natively supporting
the QCIR format: the solver GhostQ4 and the non-CNF
variant of the CEGAR-based solver RAReQS5.

Benefit of Non-CNF Representation
CNF is the standard for SAT solvers, and it works rather
well in that domain. However, for QBF solvers, converting
from a circuit representation to CNF can harm the perfor-
mance of QBF solvers. The reason for this is that the Tseitin
transformation for converting to CNF introduces only exis-
tentially quantified variables (not universally quantified vari-
ables) for the gates of the circuit. These existential Tseitin
variables are effective in efficiently pruning the search space
when searching for a satisfying assignment, but they pro-
vide less help when searching for a falsifying assignment.
In other words, the Tseitin transformation makes it difficult
for a solver to discover when no falsifying assignments ex-
ists. A SAT solver is untroubled by this, because it never
cares whether any falsifying assignments exist. As an ex-
ample of how CNF is harmful in QBF, consider the prenex
formula

∀X.∃y. y ∨ ψ(X)︸ ︷︷ ︸
g1

(1)

This formula is trivially true. Assigning y to be true imme-
diately makes the matrix of the formula true, regardless of
ψ. Under the Tseitin transformation, Equation 1 becomes:

∀X.∃y.∃{g1, ..., gn}. (y∨g1)∧(clauses defining gate vars)

Setting y to be true no longer immediately makes the ma-
trix true. Instead, an assignment needs to include the gate
variables and the universal variables X in order to satisfy

4https://www.cs.cmu.edu/˜wklieber/ghostq/
5http://sat.inesc-id.pt/˜mikolas/sw/

rareqs-nn/

the matrix. Experimental results (Ansótegui, Gomes, and
Selman 2005; Zhang 2006) indicate that purely CNF-based
QDPLL QBF solvers would, in the worst case, require time
exponential in the number of variables in X to solve the
CNF formula, even though the original problem (before
translation to CNF) is trivial.

With a circuit representation, QBF solvers can introduce
two variables for each gate, one existential and one uni-
versal. The existential variables are used in the normal
Tseitin tranformation to CNF, whereas the universal vari-
ables are used in the dual transformation to disjunctive nor-
mal form (DNF). This dual representation enables the solver
to immediately detect that no falsifying assignments ex-
ist for the above formula. Experimental results indicate
that this dual representation can greatly improve a QBF
solver’s performance on real-world problems (Zhang 2006;
Goultiaeva and Bacchus 2010; Klieber et al. 2010).

Application: Reduction-Finding
Recent QBF Gallery events included a class of application
benchmark formulas that encode the problem of searching
for certain complexity-theoretic reductions. These bench-
mark formulas are now available in QCIR format, and can
be produced using the generator described in (Jordan and
Kaiser 2013a) with the new option -qcir to produce QCIR
formulas without CNF conversion.

First we give a short introduction of the problem. See
(Jordan and Kaiser 2013b) for details, definitions and com-
parisons of various approaches to this question.

Given decision problems P and Q, a reduction from P to
Q is a (relatively easy-to-compute) function r satisfying

∃r∀x : x ∈ P ⇐⇒ r(x) ∈ Q . (2)

Of course, the general problem of determining whether a re-
duction exists between two problems is undecidable – as are
most related questions. However, we can restrict attention
to a limited (but sufficiently interesting) class of reductions
and relax (2) to hold only for structures x of size at most a
given finite n. This results in a problem that is (in a sense)
in Σp

2.
The formulas we use encode the problem of searching for

simple quantifier-free reductions between the 2304 pairs of
48 different decision problems contained in NL. Some of the
resulting problems are trivial and useful only for basic test-
ing, but some seem quite hard – e.g., searching for simpler
reductions for the Immerman-Szelepcsényi Theorem.

We provide three sets of problems6:

red 1133 2304 formulas with very simple parameters
(k = 1, c = 1, n = 3),

red 1344 QCIR encodings of the benchmarks from the
QBF Gallery (k = 1, c = 3, n = 4),

red hard a small set of more challenging formulas.

6See (Jordan and Kaiser 2013b) for the meaning of parameters.
Formulas available in QCIR and QDIMACS at
https://www-alg.ist.hokudai.ac.jp/˜skip/qcir

 0

 2

 4

 6

 8

 10

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ti
m

e
 (

se
c)

Percent of instances solved

QCIR
QDIMACS

Figure 6: Cactus plot for GhostQ on the red 1133 family

The formulas are produced using (2). First, there are lead-
ing existential quantifiers corresponding to the possible con-
tents of a parameterized reduction. Then, the universal vari-
ables correspond to the appropriate structure (e.g., graphs)
on which the decision problem P is defined. The leading
existential variables occur only on the right-side of the iff
– they are used only to determine whether r(x) ∈ Q. De-
pending on P , Q and n, additional variables may be used
to encode transitive closures. The structure of the inner for-
mula depends on the formulas defining P and Q.

As a concrete example, the QCIR formula
nreachq reachqu 1133.qcir corresponds to
searching for an extremely simple reduction for the
Immerman-Szelepcsényi Theorem but restricts attention
to only graphs of size 3. In QCIR this has 75 quantified
variables (including encoded transitive closures), while
CNF conversion introduces additional variables – for a total
of 1759 in the QDIMACS encoding of this problem.

We compared the new QCIR encoding of red 1133 to
the existing QDIMACS encoding of these problems, run-
ning GhostQ on both encodings with a timeout of 10 sec-
onds. As discussed in detail later in this paper, GhostQ has
a preprocessor that attempts to reverse-engineer QDIMACS
back into circuit form. However, this capability is limited,
and it turned out to be largely ineffective for the QDIMACS
version of the red 1133 benchmarks. On the QCIR en-
codings, GhostQ timed out on only 3 instances, whereas it
timed out on 108 instances for the QDIMACS encodings.
If the timeout is lowered to 1 second, GhostQ times out
on 96 QCIR instances and 316 QDIMACS instances. Fig-
ure 6 show the relation between time limit and number of
instances solved.

Randomly Generated Benchmarks
Randomly generated formulas play an important role in
the development process of CNF-based SAT and QBF
solvers (Brummayer, Lonsing, and Biere 2010). Such for-
mulas are the basis for fuzz testing and model-based testing
in order to automatically detect various kinds of defects in
solvers. Especially corner cases which are easily overlooked
by manually established tests are easily found by random

∨

∧

∨

u1 e1 e2

∨

u2 e3 e4

∧

∨

u3 e5 e6

∨

u4 e7 e8

Figure 7: Subformula structure

tests. In contrast to application benchmarks, which are often
very hard to solve and require therefore a lot of resources
for the solver to terminate, random formulas can be gener-
ated according to random models which provide well under-
stood control mechanisms to produce formulas of a reason-
able difficulty, size, and structure. Especially for formulas
in CNF, the random models are well understood and char-
acterized and depend only on a few parameters like number
of variables, number of clauses, ratio between clauses and
variables, negation probability of literals, etc. With giving
out the structural restrictions of a CNF, the number of pa-
rameters to be considered for generating formulas increases
because many different formulas structures are then possi-
ble.

For building non-PCNF solvers the testing infrastructure
available for CNF solvers have to be adopted. Therefore,
random models are required for generating formulas in the
novel input formats. We have proposed a framework for
generating such formulas and showed how to instantiate it
for formulas in the qpro format (Creignou, Egly, and Seidl
2012). In this work, the fixed shape model was considered.
We implemented now a generator7 producing QCIR in-
stances. In particular, we consider formulas of the structure
∀X∃Y φ, where |X| = n, |Y | = m, and φ is a conjunction
of L = c ∗ n subformulas as depicted in Figure 7. We con-
ducted experiments with m = 1000 and n ∈ {40, 45, 50}
and 2 ≤ c ≤ 4. The results are shown in Figure 8 where we
used the QCIR supporting solvers RAReQS and GhostQ
to solve the generated formulas.

Note that these models were only a slight generalization
of the CNF random models and their properties are therefore
quite well understood. Extending them with structure shar-
ing and other operators like xor and if-then-else is subject
to future work.

Outlook
We conclude this paper with two topics which are subject to
ongoing research: (i) reverse engineering structure if only a
CNF is given, and (ii) certification.

7available at http://fmv.jku.at/qcir

Reverse Engineering CNF
At the present time, most of the benchmarks available for
QBF are in the QDIMACS format. In order to make the
QCIR format more attractive to solver developers, we have
developed a reverse-engineering tool QCIR-CONV that take
a QDIMACS file and converts it to the QCIR format. For
QDIMACS files that were converted to CNF from a circuit,
this tool attempts to reconstruct the circuit. QCIR-CONV
is based on the preprocessor originally developed as part of
GhostQ. Recent related work for extracting structure from
a CNF representation includes (Goultiaeva and Bacchus
2013). QCIR-CONV is available at:

http://www.cs.cmu.edu/%7ewklieber/qcir-conv.py
Let us discuss how QCIR-CONV works. At a high level,
QCIR-CONV looks for patterns in the QDIMACS file that
reveal gate definitions. For example, the following clauses
may correspond to the gate definition g = x1 ∨ ... ∨ xn:

(¬g ∨ x1 ∨ ... ∨ xn)

(g ∨ ¬x1)

...
(g ∨ ¬xn)

In order for this be a valid gate definition, g must not be
upstream (in the quantifier prefix) of any of the literals
x1, ..., xn. Additionally, if any of the literals x1, ..., xn (or
their negations) had previously been committed as defining
a gate, we must check that g does not appear in the sub-
formula represented by such literals, to avoid constructing a
circuit with a cycle. Furthermore, for a single literal g, there
might be multiple sets of clauses that could be used to define
g as a gate. In this case, QCIR-CONV arbitrarily picks one
of them (except that it gives lower priority to single-input
gates, i.e., equivalences such as g = x).

QCIR-CONV also looks for if-then-else gates. Consider a
gate g = ite(s, x, y), where s is the ‘selector’ of the ite
gate. Such a gate can be encoded in CNF as follows:

Implication Clause
(s ∧ x)⇒ g (¬s ∨ ¬x ∨ g)

(s ∧ ¬x)⇒ ¬g (¬s ∨ x ∨ ¬g)

(¬s ∧ y)⇒ g (s ∨ ¬y ∨ g)

(¬s ∧ ¬y)⇒ ¬g (s ∨ y ∨ ¬g)

QCIR-CONV looks for four consecutive clauses of the above
form to detect possible ite gates. (Within the group of four
clauses, the clauses may appear in any order with respect to
each other, and the literals in each clause may also appear in
any order.) XOR gates are also found by the above process
for finding ITE gates: xor(x, y) = ite(x,¬y, y).

If the output of a gate occurs in only one polarity
in the original formula (for example, if the gate doesn’t
occur within the scope of a negation or similar gates
such as XOR), then the Plaisted-Greenbaum transforma-
tion (Plaisted and Greenbaum 1986) can be used instead
of the Tseitin transformation for converting a formula to
CNF. QCIR-CONV currently does not attempt to reverse the
Plaisted-Greenbaum transformation.

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
 (

se
c)

Number of instances solved by RAReQS

n=
40n=

45n=
50

n=40
n=45
n=50

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
 (

se
c)

Number of instances solved by GhostQ

n=
40

n=
45

n=
50

Figure 8: Runtimes of RAReQS and GhostQ with m = 1000 and n ∈ {40, 45, 50}

Companions. Suppose that an existential variable g is
always ‘accompanied’ by a set of literals C — i.e., every
clause that contains the variable g (in either its positive or
negative form) also contains C. (This pattern was observed
in several QBFLIB benchmarks.) For example, consider a
formula Φ where g occurs in exactly the following clauses:

(¬s ∨ ¬g ∨ a ∨ b), (¬s ∨ g ∨ ¬a), (¬s ∨ g ∨ ¬b),
(¬s ∨ ¬g ∨ z), (¬s ∨ g ∨ ¬z)

In this example, C = {¬s}. The first three clauses, if ¬s
is removed from them, conform to the pattern of a gate def-
inition g = a ∨ b. Further note that the truth value of Φ
is unchanged if ¬s is removed from these three clauses. It
is conjectured that these superfluous literals were included
in benchmarks because they helped early CNF QBF solvers
to detect satisfying assignments. QCIR-CONV identifies
whether a potential gate variable is always ‘accompanied’
by other literals, and if so, it accounts for them when trying
to identify clauses that would constitute a gate definition.

Strategy Extraction
Some QBF solvers (e.g., (Balabanov and Jiang 2012; Goul-
tiaeva, Gelder, and Bacchus 2011; Jussila et al. 2007;
Niemetz et al. 2012)) are able to provide a strategy for the
winning player, i.e., Skolem functions for the existential
variables if the formula is true, or Herbrand functions for
the universal variables if the formula is false. (Balabanov et
al. 2015) developed such a strategy-extraction algorithm for
a long-distance resolution QBF solver. The strategy maps
each variable of the winning player to a formula in terms of
the upstream variables of the opposing player. A slightly-
modified version of the QCIR format is able to represent
such strategies. In the QCIR grammar, for the definition of
output-stmt, we replace output(lit) with output(var-
list). All the variables belonging to the winning player
would be listed in this output statement and defined by
appropriate gate-stmts. Note that this allows subformulas to
be defined once and shared over the strategies for multiple
variables.

Acknowledgements
The authors would like to thank all the people who con-
tributed to the specification of the QCIR format.

Martina Seidl was partially supported by the Austrian Sci-
ence Fund (FWF) under grant S11408-N23. Will Klieber
was partially supported by the Department of Defense under
Contract FA8721-05-C-0003 with Carnegie Mellon Univer-
sity for the operation of the Software Engineering Institute,
an FFRDC.8 Charles Jordan was partially supported by JSPS
Kakenhi 15H00847, ‘Exploring the Limits of Computation
(ELC)’.

References
Ansótegui, C.; Gomes, C. P.; and Selman, B. 2005. The
Achilles’ Heel of QBF. In Proc. of the 20th National Con-
ference on Artificial Intelligence and the 17th Innovative Ap-
plications of Artificial Intelligence (AAAI/IAAI 2005), 275–
281. AAAI Press / The MIT Press.
Balabanov, V., and Jiang, J. R. 2012. Unified QBF certifica-
tion and its applications. Formal Methods in System Design
41(1):45–65.
Balabanov, V.; Jiang, J. R.; Janota, M.; and Widl, M.
2015. Efficient extraction of QBF (counter)models from
long-distance resolution proofs. In Proc. of the 29th Con-
ference on Artificial Intelligence (AAAI 2015), 3694–3701.
AAAI Press.
Benedetti, M., and Mangassarian, H. 2008. QBF-based
formal verification: Experience and perspectives. Journal
on Satisfiability, Boolean Modeling and Computation 5(1-
4):133–191.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications. IOS Press.

8Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the author(s) and do not neces-
sarily reflect the views of the United States Department of Defense
or other sponsors. This material has been approved for public re-
lease and unlimited distribution. DM-0003126.

Brummayer, R.; Lonsing, F.; and Biere, A. 2010. Automated
testing and debugging of SAT and QBF solvers. In Proc. of
the 13th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2010), volume 6175 of
Lecture Notes in Computer Science, 44–57. Springer.
Creignou, N.; Egly, U.; and Seidl, M. 2012. A framework
for the specification of random SAT and QSAT formulas.
In Proc. of the 6th International Conference on Tests and
Proofs (TAP 2012), volume 7305 of Lecture Notes in Com-
puter Science, 163–168. Springer.
Goultiaeva, A., and Bacchus, F. 2010. Exploiting QBF du-
ality on a circuit representation. In Proc. of the 24th Confer-
ence on Artificial Intelligence (AAAI 2010). AAAI Press.
Goultiaeva, A., and Bacchus, F. 2013. Recovering and uti-
lizing partial duality in QBF. In Proc. of the 16th Interna-
tional Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2013), volume 7962 of Lecture Notes in
Computer Science, 83–99.
Goultiaeva, A.; Gelder, A. V.; and Bacchus, F. 2011. A uni-
form approach for generating proofs and strategies for both
true and false QBF formulas. In Proc. of the 22nd Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2011), 546–553. IJCAI/AAAI.
Jordan, C., and Kaiser, Ł. 2013a. Benchmarks from re-
duction finding. In QBF Workshop. Available at http:
//fmv.jku.at/qbf2013/.
Jordan, C., and Kaiser, Ł. 2013b. Experiments with reduc-
tion finding. In Proc. of the 16th Int. Conference on Theory
and Applications of Satisfiability Testing (SAT 2013), vol-
ume 7962 of Lecture Notes in Computer Science, 192–207.
Springer.
Jussila, T.; Biere, A.; Sinz, C.; Kröning, D.; and Winter-
steiger, C. M. 2007. A first step towards a unified proof
checker for QBF. In Proc. of the 10th International Con-
ference on Theory and Applications of Satisfiability Testing
(SAT 2007), volume 4501 of Lecture Notes in Computer Sci-
ence. Springer. 201–214.
Kleine Büning, H., and Bubeck, U. 2009. Theory of quan-
tified Boolean formulas. In Handbook of Satisfiability, vol-
ume 185 of Frontiers in Artificial Intelligence and Applica-
tions. IOS Press. 735–760.
Klieber, W.; Sapra, S.; Gao, S.; and Clarke, E. M. 2010. A
non-prenex, non-clausal QBF solver with game-state learn-
ing. In Proc. of the 13th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2010), vol-
ume 6175 of Lecture Notes in Computer Science. Springer.
Lonsing, F.; Seidl, M.; and Van Gelder, A. 2015. The QBF
Gallery: Behind the scenes. arXiv:1508.01045.
Narizzano, M.; Pulina, L.; and Tacchella, A. 2006. Report of
the third QBF solvers evaluation. Journal on Satisfiability,
Boolean Modeling and Computation 2(1-4):145–164.
Niemetz, A.; Preiner, M.; Lonsing, F.; Seidl, M.; and Biere,
A. 2012. Resolution-based certificate extraction for QBF -
(tool presentation). In Proc. of the 15th International Con-
ference on Theory and Applications of Satisfiability Testing

(SAT 2012), volume 7317 of Lecture Notes in Computer Sci-
ence, 430–435. Springer.
Plaisted, D. A., and Greenbaum, S. 1986. A structure-
preserving clause form translation. Journal of Symbolic
Computation 2(3):293–304.
QBF Gallery 2014. QCIR-G14: A non-prenex non-
CNF format for quantified Boolean formulas. Available
at http://qbf.satisfiability.org/gallery/
qcir-gallery14.pdf.
Tseitin, G. 1983. On the complexity of derivation in propo-
sitional calculus. In Automation of Reasoning, Symbolic
Computation. Springer. 466–483.
Zhang, L. 2006. Solving QBF by Combining Conjunctive
and Disjunctive Normal Forms. In Proc. of the 21st Na-
tional Conference on Artificial Intelligence and the 18th In-
novative Applications of Artificial Intelligence (AAAI/IAAI
2006). AAAI Press.

