Generalized Cp Model Averaging for Heteroskedastic Models

Qingfeng Liu
Otaru University of Commerce
Ryo Okui
Institute of Economic Research, Kyoto University

January 9, 2012
The outline of this presentation

- A brief review of model averaging.
- Generalized Mallows’ C_p Model Averaging for heteroscedastic models.
- Monte-Carlo studies.
- The conclusion remarks.
Doctors hold a consultation to determine an optimal treatment plan. Each doctor has one plan. Optimal plan = weighted averaged plan. The risk of misdiagnosis can be reduced.
Economists have many candidate models to explain economic phenomenon. Each model is reasonable to a certain extent.

Using an averaged model (model averaging) instead of a particular model (model selection), the loss arising from misspecification can be reduced.
What is the model averaging in econometrics

- **DGP**

 \[y = \mu(x) + e. \] (1)

 with \(\mu(\cdot) \) is unknown. The target is to estimate \(\mu \) at low statistical risk.

- We have a set of candidate models for \(\mu(\cdot) \), to which \(K \) models belong

 \[\mathcal{M} = \{ M_1, M_2, \cdots, M_K \}. \]

- Based on model \(M_k \), we can get \(\hat{\mu}_{M_k} \) a estimator of \(\mu \).

- With a weight function \(W(\cdot) \) (or a vector \(W = (\omega_1, \cdots, \omega_K)' \)), model averaging estimator can be expressed as

 \[\hat{\mu} = \sum_{M_k \in \mathcal{M}} W(M_k) \hat{\mu}_{M_k}. \] (2)
Why do we use model averaging?

- Model averaging can reduce the loss and risk of estimation.
- Loss function and risk function for estimator with certain weight W

$$L_n(W) = \| \hat{\mu}(W) - \mu \|^2,$$

$$R_n(W) = E(L_n(W) | X), \quad (3)$$

- Optimality: we say a weight \hat{W} or the estimator $\hat{\mu}(\hat{W})$ is optimal if

$$\frac{L_n(\hat{W})}{\inf_{W \in \mathcal{H}_n} L_n(W)} \xrightarrow{p} 1, \quad (4)$$

$$\frac{R_n(\hat{W})}{\inf_{W \in \mathcal{H}_n} R_n(W)} \xrightarrow{p} 1. \quad (5)$$

- In order to get an estimator of μ which achieves the infimum of the loss and risk, the task in the field of model averaging is to construct a model averaging criterion, by which one can find an optimal weight \hat{W} and get the optimal estimator $\hat{\mu}(\hat{W})$.
The relationship between model averaging and model selection

- Model averaging is superior to model selection.
- A model selection method can be regarded as a model averaging with a special weight, \(I(M_k = M_{AIC}) \), where \(I(\cdot) \) is an indicator function.

\[
\hat{\mu}_{AIC} = \sum_{M_k \in M} I(M_k = M_{AIC}) \hat{\mu}_{M_k}.
\]

- Hence, with an optimal weight model averaging estimator can achieve lower risk than model selection estimator.
Existing Researches on model averaging method

- Bayesian model averaging estimators (For review see Hoeting (1999)).
- Weighted-average least squares (WALS) (Magnus et al., 2010, Magnus et al., 2011).
- Smoothed BIC, AIC (Buckland et al., 1997).
- Hansen’s MMA for homoscedastic models (Hansen, 2007).
- JMA for homoscedastic models (Hansen and Racine, 2010).
- This paper extends Hansen’s MMA, and propose a model averaging method for heteroskedastic case.
Bayesian model averaging

- Take $P(M_k)$ as the prior probability of model M_k, and $\pi(\theta_k|M_k)$ as the prior density of θ_k conditional on model M_k.
- Bayesian model averaging estimator

$$\hat{\mu} = E(\mu|y) = \sum_{k=1}^{K} P(M_k|y) E(\mu|M_k, y)$$

- Posterior density

$$\pi(\mu|y) = \sum_{k=1}^{K} \pi(\mu|M_k, y) P(M_k|y)$$

- Posterior density of M_k

$$P(M_k|y) = \frac{P(M_k) \lambda_k}{\sum_{k=1}^{K} P(M_k) \lambda_k}$$

- λ_k is the integrated likelihood of M_k

$$\lambda_k = \int L(y|M_k, \theta_k) \pi(\theta_k|M_k) d\theta_k$$
Smoothed BIC and AIC

- According to Claeskens and Hjort (2008) \(BIC \approx -2 \log(\lambda_k) \).
- Assuming \(P(M_k) \) is \(k \)-homogeneous, from (8)

\[
P(M_k \mid y) = \frac{P(M_k) \lambda_k}{\sum_{k=1}^{K} P(M_k) \lambda_k}
\]

we have

\[
P(M_k \mid y) \approx \frac{\exp(-BIC_k/2)}{\sum_{k=1}^{K} \exp(-BIC_k/2)}.
\]

- Smoothed-BIC-Based estimator

\[
\hat{\mu}_{MA-BIC} = \sum_{M_k \in \mathcal{M}} c_{BIC}(M_k) \hat{\mu}_{M_k},
\]

\[
c_{BIC}(M_k) = \frac{\exp(-BIC_k/2)}{\sum_{k=1}^{K} \exp(-BIC_k/2)}.
\]

- Smoothed-AIC has a similar form

\[
\hat{\mu}_{AIC-BIC} = \sum_{M_k \in \mathcal{M}} c_{AIC}(M_k) \hat{\mu}_{M_k},
\]

\[
c_{AIC}(M_k) = \frac{\exp(-AIC_k/2)}{\sum_{k=1}^{K} \exp(-AIC_k/2)}.
\]
Asymptotic distribution of model averaging estimators under parametric setup

- Hjort and Claeskens (2003) take the following local misspecification setup, avoiding domination by bias

 \[f_{true}(y) = f_{n}(y) = f(y, \theta_0, \gamma), \]
 \[\gamma = \gamma_0 + \frac{1}{\sqrt{n}} \delta. \]

- The most narrow model is \(f_{narr}(y, \theta) = f(y, \theta, \gamma_0) \), the full model is \(f_{full}(y, \theta, \gamma) \) including all parameters in \(\delta \).
- Model averaging estimator follow non-normal distribution

 \[\hat{\mu} = \sum_{j \in 2^K} W(M_{S_j}) \hat{\mu}_{S_j}. \]
Setup and Purpose

- DGP: infinite dimensional linear model

\[y_i = \mu_i + e_i, \quad (18) \]
\[\mu_i = \sum_{j=1}^{\infty} \theta_j x_{ij}, \quad (19) \]

\[E(e_i | x_i) = 0, \quad E\mu_i^2 < \infty \]

- Heteroskedasticity

\[E(e_i^2 | x_i) = \sigma_i^2, \]

- Propose a model averaging method for heteroskedastic case, estimate \(\mu_i \) at low risk.
Notice that we change the meaning of the notation M and K hereafter.

M denotes the total number of candidate models in the candidate set. The mth model has $k_m > 0$ regressors which could be any variables in x_i.

The mth approximating model

$$y_i = \sum_{j=1}^{k_m} \theta_j^{(m)} x_{ij}^{(m)} + b_i^{(m)} + e_i$$ \hspace{1cm} (20)

$$b_i^{(m)} = \sum_{j=1}^{\infty} \theta_j x_{ij} - \sum_{j=1}^{k_m} \theta_j^{(m)} x_{ij}^{(m)}$$ \hspace{1cm} (21)

$$Y = X^{(m)} \Theta^{(m)} + b^{(m)} + e.$$

The LS estimator from the mth model

$$\hat{\Theta}^{(m)} = \left(X'_{(m)} X_{(m)} \right)^{-1} X'_{(m)} Y$$

$$\hat{\mu}^{(m)} = X_{(m)} \left(X'_{(m)} X'_{(m)} \right)^{-1} X'_{(m)} Y \equiv P_{(m)} Y$$
The model averaging estimator of \(\mu \)

\[
\hat{\mu}(W) = \sum_{i=1}^{M} \omega(m) \hat{\mu}(m) = \sum_{i=1}^{M} \omega(m) P(m) Y \equiv P(W) Y,
\]

where

\[
W = \left(\omega(1), \cdots, \omega(M) \right)' \in H_n \equiv \left\{ W \in [0,1]^M : \sum_{m=1}^{M} \omega(m) = 1 \right\}.
\]

In Hansen (2007)

\[
H_n \equiv \left\{ W \in [0,1]^M : \sum_{m=1}^{M} \omega(m) = 1, \omega(m) = c/n, c = 1, \cdots, n. \right\}
\]
Hansen’s MMA for homoscedastic models

- Hansen’s MMA (Mallows’ Cp Model Averaging): in order to obtain an optimal model averaging estimator, which can achieve the infimum of the loss and risk, Hansen proposed the following criterion to select optimal weight

\[
C_n = n^{-1} \| Y - P(W)Y \|^2 + 2n^{-1} \sigma^2 \text{tr} [P(W)]
\]

- Optimal weight

\[
\hat{W}_{C_n} = \arg \min_{W \in \mathcal{H}_n} \hat{C}_n.
\]

- Hansen’s MMA has optimality for homoscedastic models but not for heteroscedastic models.
Our Generalized Cp for heteroscedastic models

- We propose a Generalized Cp model averaging method which has optimality for heteroscedastic models, $E(e_i^2|x_i) = \sigma_i^2$.
- Generalized Cp model averaging criterion

$$GC_n = \|Y - P(W)Y\|^2 + 2\text{tr}[\Omega P(W)],$$

where Ω is a $n \times n$ diagonal matrix which ii entry is σ_i^2.

- The expectation of GC is the risk function plus a constant.

Le. 2. We have $E(GC_n(W)) = R_n(W) + \sum_{i=1}^{n} \sigma_i^2$.
Th. 2. As $n \to \infty$, and $M \to \infty$, for $\zeta_n \equiv \inf_{W \in \mathcal{H}_n} R_n(W)$ and some integer $1 \leq G < \infty$, if

$$E \left(e_i^{4G} | x_i \right) \leq \kappa < \infty,$$

(22)

$$M\zeta_n^{-2G} \sum_{m=1}^{M} \left(R_n(W_0^m) \right)^G \to 0,$$

(23)

$\mu' \mu / n = O(1)$, and $0 < \inf_i \sigma_i^2 \leq \sup_i \sigma_i^2 < \infty$, then

$$\frac{L_n(\hat{W}_{GC_n})}{\inf_{W \in \mathcal{H}_n} L_n(W)} \xrightarrow{p} 1.$$

W_0^m is a vector whose mth element is one and all other elements are zeros.
Feasible GC

- Replace \(tr[\Omega P(W)] \) by

\[
\frac{n}{n-K} \sum_{i=1}^{n} \hat{e}^2_i p_{ii}(W)
\]

\[
\hat{G}C_n \equiv \| Y - P(W) Y \|^2 + 2 \frac{n}{n-K} \sum_{i=1}^{n} \hat{e}^2_i p_{ii}(W), \quad (24)
\]

where \(\hat{e}_i \) is the residual from the biggest model, and \(K \) is the number of regressors in the biggest model.

- \(\hat{W}_{\hat{G}C_n} = \arg \min_{W \in \mathcal{H}_n} \hat{G}C_n \).
Optimality of feasible GC

Th.3. As $n \to \infty$, when $\sum_{i=1}^{n} \hat{e}_i^2 p_{ii}(W)$ is used instead of $tr[\Omega P(W)]$, Theorem 2 is valid if

$$0 < \lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} \sigma_i^2 = \bar{\sigma}^2 < \infty,$$

$$\max_{1 \leq m \leq M} \max_{1 \leq i \leq n} p_{m,ii} = O\left(n^{-1/2}\right),$$

$$\frac{\tilde{p} e' e}{\xi n} \to 0,$$

where $\tilde{p} \equiv \sup_{W \in \mathcal{H}_n} \max_{1 \leq i \leq n} (p_{ii}(W))$, and $p_{m,ii}$ is the ith diagonal element of $P_{(m)}$.

- The proof of optimality under some regularity conditions is an extension of Wan et al. (2010).
GC works as a model selection criterion

- The criterion for model selection:

 \[
 \hat{GC}_n (m) \equiv \| Y - P_m Y \|^2 + 2 \frac{n}{n - K} \sum_{i=1}^{n} \hat{e}_{i}^2 p_{m,ii}. \tag{28}
 \]

- The estimator of the indicator of the optimal model:

 \[
 \hat{m} \equiv \arg \min_{1 \leq m < M} \hat{GC}_n (m). \tag{29}
 \]
Outline of the proof of Th.2.

Since

\[GC_n = L_n(W) + \| e \|^2 + 2 \langle e, (I - P(W)) \mu \rangle \\
+ 2 \left(tr [\Omega P(W)] - \langle e, P(W) \mu \rangle \right) \]

We just need to show

\[\sup_{W \in \mathcal{H}_n} \left| \langle e, (I - P(W)) \mu \rangle \right| / R_n(W) \rightarrow_p 0 \]

\[\sup_{W \in \mathcal{H}_n} \left| tr [\Omega P(W)] - \langle e, P(W) \mu \rangle \right| / R_n(W) \rightarrow_p 0 \]

\[\sup_{W \in \mathcal{H}_n} \left| L_n(W) / R_n(W) - 1 \right| \rightarrow_p 0 \]
Outline of the proof of Th. 3.

- \(\tilde{p} \equiv \sup_{W \in \mathcal{H}_n} \max_{1 \leq i \leq n} (p_{ii}(W)) \), \(P^* \) is the projection matrix of the model with all regressors, \(p_{ii}^* \) is the \(i \)th diagonal element of \(P^* \), \(\bar{p}^* \equiv n^{-1} \sum_{i=1}^{n} p_{ii}^* \).
- Condition (26) implies that \(\tilde{p} = O\left(n^{-1/2}\right) \) and \(K = O\left(n^{1/2}\right) \); condition (23) implies that \(\zeta_n \to \infty \).
- Since

\[
\widehat{GC} = GC + 2 \left(\sum_{i=1}^{n} \hat{e}_i^2 p_{ii}(W) - tr[\Omega P(W)] \right) + \frac{2K}{n-K} \sum_{i=1}^{n} \hat{e}_i^2 p_{ii}(W). \tag{30}
\]

...to prove Theorem 3, we only need to show that

\[
\sup_{W \in \mathcal{H}_n} \left\{ \sum_{i=1}^{n} \hat{e}_i^2 p_{ii}(W) - tr[\Omega P(W)] \middle/ R_n(W) \right\} \xrightarrow{p} 0. \tag{31}
\]

\[
\sup_{W \in \mathcal{H}_n} \left\{ \frac{K}{n-K} \sum_{i=1}^{n} \hat{e}_i^2 p_{ii}(W) \middle/ R_n(W) \right\} \xrightarrow{p} 0. \tag{32}
\]
Monte-Carlo Studies

- The data generating process is:

\[y_i = \sum_{j=1}^{10000} \theta_j x_{ij} + e_i. \]

- Draw a random sample of \(\{ x_i, e_i \} \) for each replication such that \(x_{i1} = 1 \) and other \(x_{ij} \) are i.i.d. \(N(0, 1) \).
- \(e_i \sim N(0, \sigma_i^2) \) is independent of \(x_{ij} \).
- \(\sigma_i^2 = 1 \) (homoskedastic), and \(\sigma_i^2 = x_{2i}^4 + 0.01 \) (heteroskedastic).
- \(\theta_j = c \sqrt{2\alpha} j^{-\alpha-1/2} \), where the parameter \(\alpha = 0.5 \), which determines how quickly the magnitude of \(\theta_j \) decays as \(j \) increases, and we vary the values of \(c \) so that the population \(R^2 \) increases with \(c \) from 0.1 to 0.9.
Monte-Carlo Studies

- The sample size is $n = 50$ and $n = 150$.
- The number of observable regressors K is 5 and 15 when $n = 50$, and 10 and 30 when $n = 150$.
- We consider K different models so that $M = K$. The kth model includes the first k regressors and the $(k + 1)$th model is nested in the kth model.
- The number of replications is 1000.
Remarks

- WALS for heteroskedastic models, proposed by Magnus et al. 2011, is a Bayesian combination of frequentist estimators. It has bounded risk, and its computational effort is negligible.
- JMA is propose by Hansen and Racine (2010) based on Jackknife for heteroskedastic models.
Figure: Homoskedastic Cases

(a) \(n = 50, M = 5 \).

(b) \(n = 50, M = 15 \).

(c) \(n = 150, M = 10 \).

(d) \(n = 150, M = 30 \).
Figure: Heteroskedastic Cases
Conclusion remark

- We proposed a model averaging methods for heteroscedastic models.
- Our Gp model averaging method optimality of this method.
- The results of Monte-Carlo studies showed that our method works well.
Thank you very much and welcome to Otaru city!