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An expository supplement to the paper “Optimization of the Gaussian
and Jeffreys power priors with emphasis on the canonical parameters

in the exponential family”

Haruhiko Ogasawara

This article gives an expository supplement to Ogasawara (2014) for the
estimators of the multinomial logits in the categorical distribution, which is the

generalization of the Bernoulli distribution.

1. The Fisher information matrix

Define the likelihood of the vector of the canonical parameters 0 when

observations are given as:
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where JVj (i=1..,mj=L.,K) are given observations. Let

I =n" log L . Then,
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From (S.2),
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Then, the population information matrix per observation becomes
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with Y( K-1) — (Y, Y 1)' . Note that (S.4) 1s also given from the property of
the canonical parameters in the exponential family. The (K —1)x (K —1)

matrix Ly is also denoted by IO(K—I) for clarity.

Lemma 1.
| Lok =pp, P (S.5)
Proof. The result is derived by induction. Assume that
p;> 0(j=1...,K) WhenK=2, Io(l) = P4, = P1P,, which shows that
(S.5) holds. Suppose that when K =J , (S.5) holds. Write
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N T —p ' D, p,q, | where Py = (P15 Py 1) . Since

|IO(J—1) =pp,p, >0 by assumption, IO(J—l) has its inverse.
Consequently, using the formula of the determinant of a partitioned matrix,
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when A is nonsingular, it follows that
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which shows that (S.5) holds when K =J+1. When P21P, " P, =0 from
(S.4) with K =J+1 , at least one of the rows/columns of IO(J) 1s zero and

consequently, | IO(J) =0 , which shows that (S.5) holds also for the singular
case. Q.E.D.

2. The Jeffreys prior
The log prior derivatives evaluated at the population values are
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where
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Consequently, (S.9) becomes
1
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When K =2, (S.11) becomes (1-2p))/2 , which is also given by
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P« =1/K and Px =1/ K or when the proportions pj(j =1,...,K)
are equal. When K = 2, this holds with P} = 0.5,

Lemma 2.
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which also comes from Subsection A.1 of the appendix.
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From the above results,
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From (S.17),
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1s used. (S.18) gives (S.12). Q.E.D.

Note that the term (1/3)[-] in (S.17) is unnecessary to have the result, but

1s included for illustration.
From Lemma 2, we have
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2.1 Linear predictor with the Jeffreys prior
Using Lemma 2 and (S.20), Result 5 gives
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2.2 TMSE with the Jeffreys prior
Similarly, Result 6 yields
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> 3 (for the inequality see Result 9).

3. The Gaussian prior
The density of the Gaussian prior is defined as

Sf(0) cexp(—0'0/2) (S.24)
giving q; =-0,.
Under correct model specification, from (2.3) and (2.4) AG|MLA2 or

AW|MLA2 by the Gaussian prior is
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3.1 Linear predictor with the Gaussian prior
Result 3 with the above results gives
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3.2 TMSE with the Gaussian prior
Similarly, Result 4 gives
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4. The largest variance of the non-negative quantities whose sum is fixed

Let P; (J=L...K) with fixed K be non-negative quantities, which
vary with their sum being fixed. Suppose that the sum is 1 without loss of

generality. Then, the variance of P;»---» Px denoted by var(p) is given by
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So, the problem of maximizing the var(p) reduces to that of Z =1 P; .Inthe
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case of K =2, ijl p,=p tph,=p +t (I-p) , whose largest value is

given when P;=0 or 1. The smallest variance 0 is given when P; = P, =0.5.
Note that pf + pzz is the square of the radius of the circle whose center is the
origin in the ( P> P>) plane. Since P, 20, p, 20 and p,+p, =1, possible
values of pf + pzz are those on the line segment connecting (0, 1) and (1, 0) in
Figure 1. The value pf + P22 1s given by the square of the radius of the circle
which has point(s) on the line segment in the first quadrant including (0, 1) and
(1, 0). From Figure 1, it is obvious that the largest value is given when ( P15 P>)
=(0, 1) or (1, 0) and that the smallest value is given when P} = P; =0.5.

Generalizing the above result to the K-dimensional space with K =3 | the
line segment becomes a portion of the (K —1) -dimensional hyperplane

satisfying Py +.-+ Px =1 and p; 20 (j=1L,...,K) . The problem is to have

the largest radius of the ball whose center is the origin and whose surface has
point(s) on the plane. Since the plane is restricted to be in the first (generalized)

quadrant (1= p; 20;j=1,...,K) | the ball with the largest radius has K points

(P15 Pys- P ) =(1,0,...,0), (0,1,0....,0),...,(0,...,0,1) on the plane. This gives
the largest variance
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The smallest variance 0 is given when pP; =...= Px = K.
When the sum is c rather than 1, the largest variance becomes

(K=K,
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Figure 1. A geometric interpretation of the problem maximizing the variance of
non-negative quantities when the mean is fixed
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