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In the following, the number of distinct &,’s among 6,(j=1,..,N) is

assumed to be sufficiently large with the largest one being N. As addressed in
Ogasawara (2021), in the case of the 1PL-G model, %, is associated with the

location indeterminacies of @ ¢ ; and 4 b, . Consequently, under

0=0 = ks, k, canbe setto 1. Define var{In(e”’ + k\)} as the variance
of In{exp(ad,)+k} (j=1,.,N). Let
O, =min{d;; j=1,.,N} with inf-k, =—exp(ad,,). (a.1)

Then, we have the following result.

Lemma 1. /n the case of the I1PL-G model,
lim var{ln(e” +k)} =+ (a.2)

k; —>inf-k; +0
Proof. Let Kj = exp(aﬁj) + kl (] = la"a N) and Kmin = eXp(agmin) + kl .
Then,



var{In(e”’ +k)} =N ‘lﬁ [ln{exp(aﬁj) 1k} —In(e” + kl)T
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m=1 (m=min)

When k&, — inf-k, +0 , by definition InK . — —00 Then, since
N

-N"' Z InK., s finite, the last result in (a.3) goes to +o0 Q.E.D.

m=1 (m#min)

A.1 The results under a = [Var{ln(e‘w + kl)}]l/z

In this section the results under @ =[var{In(e® + k, )1"? with

0=0"=0 and var(d)=var(d)=1 are shown.

Theorem 2. Under a = [Var{ln(eae + k1)}]1/2 in the 1PL-G model,

NI/Z
lm a =+, lm b =——mo,
k;—inf-k; +0 k;—inf-k; +0 N -1
. . -exp(ab.) —inf-k .
0< lim o =SSXP@h) L1 (a.4)
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Proof. lim a =+

ki >infk, +0 is given by Lemma 1. For b, | let

K; =1/K,; =1/{exp(af,)+k;} (j=1,..,N) and K, =1/K,, . Denote
var{ln(e* +k,)} = var[In{l/(e* +k,)}] by var(InK ). When

k, — inf-k; + 0 we find from Lemma 1 that the denominator of b in the

first paragraph of Section 4 i.e., {var(InK =k)} Y25 100 . On the other hand, for
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the numerator of b, , when k, —> inf-k; +0 using InK , — - and

InK_. — o0 , we have

lim [In{exp(ab)—k }—In(e” +k)]

ky —inf-k; +0
N
= In{exp(ab,)—inf-k,} - N Z In{exp(a6,) + inf-k, }
j=1(j#min)
+N" lim InK__ (a.5)
K o>+
=N Iim an
K >0
Then,
_11 K*
lim b = lim N _In T
K. —>+0 K. —>+o0 {Var(]nK )}
. 2 -1/2
N InK" N InK* -1/2 1/2 6
= lim N Z / —N‘lz n m — N —= N (2.6)
K i =+ — | InK o InK I-N N -1

and the results for C; areobvious (i=1,...,n).

For 0, =In{exp(a0,;,)+k}, wehave
In{exp(al_ . +k)}—In(e” +k)

lim 6. = lim 9 172
by, —>inf-k, +0 e —>inf-ky +0 [var{ln(e®™ +k,)}]
~ ~InK,, +InK" 1-N" _ N2 @7)

lim . —_
G {var(in KD} NN
For 91*(1 =1,...,N;j#min) a5 for bi* , we obtain
In{exp(ad, +k,)} - m

lim 6 =

1m0, 111 a0 172
ky —inf-k;, +0 k,—inf-k; +0 [Var{ln(e + kl )}]
172 (a.8)
= gim AR g = QED,
Kmin—+o {var(In K )} ky—>inf-k; +0 N -1

It is easily confirmed that



N

lim @ =N") lim 6 =0

ky —>inf-k, +0 “= i inf +0 (a.9)
However,
N - \2 N
. * _1 . * . %
var| lim @ |=N Z lim €. - lim 6| = >1 (2.10)
ey —inf-k; +0 =] ky —>inf-k; +0 J ki —inf-k; +0 —1 : :

When & —inf-k, +0 W, . (=¥, =1/[1+exp{-a (6, —b))}] when
6’; = ‘9;1111 =In{exp(ab,;,) +k, }) goes to zero, and consequently, P (5 Pz’j
when @ = Oin oF equivalently 9; = Q;in) goes to C: . The last result holds
only for 8., since —a*(H; —b, ) =In{exp(ab,) -k} - In{exp(al;)+k} is
finite for €, (j =1,...,N;j# min),

Lemma 2. Under a = [Var{ln(eae + k1)}]1/2 in the 1PL-G model,
) oP’
lim —|. .= lim L
ky—>infk+0 9@ 0 =Omin  k—inf-k;+0 o0, .
Proof. Recall that K; =1/ K, =1/In{exp(a8,)+k} (j=1,..,N) and

K . =1/K__. Then, as derived in Section 3 we have

=0 (i=1l,..n) (a.11)

*

oP"  {var(InK")}"*{exp(af,,)+k}(1-P,,)
06, exp(ab,,,) +exp(ab,)
¥\ 12 12
_ {Var(llg*K N i=1,.m), (12

where &, =(-P,;,)/{exp(ab,,;,)+exp(ab,)} does notdepend on & ;and
var(InK ") = var[In{l/ (e” + k,)}] = var{In(e® + k,)} .
When k&, = inf-k, +0 , we have In K;in —> 1+ and from Lemma 1

var(In K") — +oo . Using L’Hopital’s rule, we obtain



oP’ . Of{var(InK")}"* /0K .
lm ——= Ilim - — h
ky—>inf-k; +0 89 K in =40 oK . /0K .

K. —>+o0 .
min min m1

N *
——{var(an D22 lim Nlan NZZ h
K = (a.13)

=0 (i=1,...,n),
where *hm (ln Kmln) [ Koin =0 s given again by L’Hopital’s rule. Q.E.D.

Then, we obtain the following main result.

Theorem 3. Under a = [Vaf{ln(eae + k1)}]1/2 in the 1PL-G model,

n
lim Zl..:hml.:hml =0
ki —inf +0 & Fimin® = Sinfok, 10 S™INT g Sinfk 4o QMIn® and (a.14)
lim /[i= lim I,= lim [, =+
ky —inf-k; +0 ky —inf-k; +0 S* ky —inf-k; +0 Q (315)

where Lgmins =1 sj*+ when 0 i O.in with other similar expressions defined
similarly.
On the other hand, when k — Sup- k -0 , all the values of IF*,

and Lo are finite and their unattained limiting values are given by
k, =sup-k, in aP,-* /59; i=L...,n;j=1..,N) of the total informations,

and C:up-kl (= C; when b, =min{b, ;m=1,...n}) goes to —0.
Proof. The first set of limiting zero informations (see (a.14)) is given by
Lemma 2. For the second set of their infinite limiting values (see (a.15)), when
k, — inf-k, +0 it is found that

oP’ .
p é* = [var{In(e"’ + k,)}1"* {exp(ab,) + k, } A,

J (a.16)
(i=1,...,n;j=1,..,N;j+min)

goto +o since var{ln(e” +k )} — +o and exp(ab;)+k, is finite as 7, ,
which gives the second set of infinite limiting informations.
The results when &, = sup-k, =0 are obviously derived since all the

factors 1n 5P,-* /0 9; are finite for this limiting case while
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*

¢ ={c,exp(ab)—k}/{exp(ab)—k}  when ¢, = Cop-k, £OES tO —00
since the numerator is negative and finite and the denominator approaches +0.
Q.E.D.

A.2 The results under @ =a =k, (>0)
Next, we consider the case of parametrization with @ =a "= ki (>0),

where &; =1 is used without loss of generality. That is,ab, and a6, are
redefined as b, and @ i, respectively before transformation with

- _ N
0 =N IZ ].:19 ;=0 to remove the location indeterminacy. After

transformation, using a =1 we have
. T .« . b)-k
b =In{exp(b,)—k}—In(e’ + k), c':clexp(l L
i { p( l) l} ( 1) i eXp(bl.)_kl (317)

_ _ N
0 =In{exp(6,)+k}~In(e’ + k) with &' =N-12_19;; =0

i=1..,nj=1.,N).
We have two possible regions of k, as given in Section 2:
inf-k, =—min{exp(6,); j =1,...,N} <k, <min{exp(),); i =1,...,n} =sup-k, (a.18)
and Inf-k; <k <min{c,exp(b,); i =1,...,n} = max-k,<sup-k, . (a.19)
Define 6,,, =min{f,;j=1,...,N} as before with similar expressions

defined similarly. Then, we have the following results.

Theorem 4. Under a4 = a =1 and 0=0"=0 in the 1PL-G model,
. ¢ exp(b,)—inf-k,

kl—}iinlfl-’l%l+0b; =T k1—>liin1g111+0 <= exp(b,) —inf-k, (<D s finite,
JNim e =m0, M ¢ s finite, (2.20)
3 —}}Igcl+0 Orin =20 k —}iinl;%ﬁo H; (jeminy = T with k —}iinrt551+0 6"=0 and
Var( lim «9*) =400 (i=1,..,n;j=1,...,N)
Ky —inf-k; +0 :

Proof. The results are given as in Lemma 1 and Theorem 2 with
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a=a =1 and QZQ*ZO.Q.E.D.

Lemma3. Under a=a =1 and 0 =0 =0 in the 1PL-G model,
lim 6P /00, =0 4,4 lim 0P /(36’; (a.21)

o —>inf-k, +0 Jo —>inf-k, +0
(i=1,..,n; j=1..,N;j#min) are positive and finite.
Proof. The zero limiting value is given by k —}iingﬁo aPi* / 8‘9:1111 =
(Pl +hI-B)
fiinfh+0 - exp(6,;,) +exp(h,)
other hand,

since exp(@._..)+k, — +0_ Onthe

. OF . texp(0) +kj(1-F)
lim —= lim
ky—inf-k; +0 89 g ko —>inf-ky +0 eXP(Hj) + eXp(b i)

Dyl P 22
_ {eXp( ]) m 1}( U)(lzl,,n; j:l),,,’N;jimin)’ (a )

exp(0,) +exp(b,)
which are obviously positive and finite by definition. Q.E.D.

Theorem 5. Under a=a =1 and 0 =6 =0 in the IPL-G model,

n
im > Ig.= lim I ..= lim J,..=0.
y—sinfky+0 4=t PN inv0” ST Sinek vo - QM ; and (a.23)
N n N N
lim [L=>>1.., lm IL=>1I lim I5.=Y1,
k—>infk 40 T = F™2 o ik 0~ S = s+ and k—infh 10 = + (a.24)

are finite, where the right-hand side in each equation of (a.24) is defined to be
given by k, =1nf-k, .
When k, — sup-k, —0 , all the values of 1;*, IS+* and 15 are finite and
their unattained limiting values are given by k, =sup-k, in
53* /5‘9; (i=1..,n7=1,...,N) of'the total informations, and C:up-kl (= C;
when b, =min{b, ;m=1,...,n})goesto —0.
Proof. Using Lemma 3 and the definitions of the informations, (a.23) and

(a.24) follow. The results when k&, —> sup-k, —0 are given as in Theorem 3.
Q.E.D.



Recall that under @ =[var{ln(e" +k)}1", Var(kl—}iinlg/%ﬁo 9*) is finite

while 1 F+*, 1 ;* and 1. goto +o0 when kl —> inf—kl +0. To the contrary,

under a=a =1, the opposite results with infinite Var( . _)llllffl}q 0 0 ) and

finite 1/ ;*, I S+* and 1 5* when k, = inf-k, +0 are obtained.

Theorem 6. Under a=a =1 and @ =60" =0 in the IPL-G model,
using the possible region of (a.18) for k., the total informations [ wes Ise and

+
1 o* have no maxima though their suprema are finite, which are given when

k, =sup-k,. When the possible region of (a.19) for ki s used, the total

informations have finite maxima, which are obtained by k, = max-k,
oP"  {exp(6)+k}(1-P)
Proof. Since *
00, exp(6;)+exp(b,)

=L..,n; j=1..,N) , the

total informations are increasing functions of k, , which gives the results

depending on the domains of definition for k, Q.E.D.

Corollary 2. Under the same condition as in Theorem 6 using max-k, in
(a.19) for k,, when ¢, =0 for at least one item, the maxima of the
informations are already attained before transformation.

Proof. When ¢C; = 0 foran item, max-k,
= min{c, exp(b,); m =1,...,n} becomes 0, which gives the required result.
Q.E.D.

Corollary 2 shows a flexibility of the model with negative C; . Even when

¢, =0 for all items, the informations can further be increased. Note that in this

case the model before transformation is the usual 1-parameter logistic or Rasch
model.



