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Abstract 

The asymptotic standard errors of the IRT equating coefficients 
given by the mean/sigma, mean/mean and mean/geometric mean 
methods are derived when the two-parameter logistic model holds and 
item parameters are obtained by the marginal maximum likelihood 
estimation.  The case of two nonequivalent examinee-groups and the 
case of single group are considered.  The numerical examples show 
that the mean/mean and mean/geometric mean methods are superior to 
the mean/sigma method.  The results also show that the number of 
quadrature points in the numerical approximation to the integration of 
ability parameters is crucial to the estimation of the asymptotic 
standard errors. 
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Test equating becomes necessary when the scale of a test is to be 
compared with the scale of another test.  If the two tests are 
composed of items whose characteristics are given by applying item 
response theory (IRT) separately to each test, the results of one of the 
tests can not directly be compared to those of another test.  This 
comes from the fact that usually the abilities of examinees in a test are 
standardized with mean zero and unit variance to remove the 
indeterminacy of an IRT model.  Hence, the estimates of item 
parameters (and abilities if necessary) in one test should be 
transformed to the scales of the parameters of another test by equating. 

In IRT equating, the method of common items is often used in the 
above situation.  The common items may be part of each test 
(internal items) or external ones.  A simple equating procedure in 
such situations with common items is that of using moments (means 
and standard deviations) of the estimates of the common items.  
From the property of the IRT model, the transformation for the 
parameters in equating should be linear.  The equating coefficients 
are estimated as the slope and intercept in the linear transformation.  
Marco (1977) used the means and standard deviations of difficulty 
parameters.  This is called the mean/sigma (m/s) method.  Shiba 
(1978) used the means of discrimination parameters in addition to 
those of difficulty parameters.  Loyd and Hoover (1980) used a 
similar method in the Rasch model.  This is called the mean/mean 
(m/m) method.  As a variation of the m/m method, Mislevy and Bock 
(1990) (see also Kolen & Brennan, 1995, Ch.6) proposed a method 
using the geometric means of discrimination parameters and the 
arithmetic means of difficulty parameters.  This is called the 
mean/geometric mean (m/gm) method in this article. 

Other methods using the item/test characteristic curves (Haebara, 
1980; Stocking & Lord, 1983) have also been developed.  These 
methods are more sophisticated than the methods using moments of 
the item parameters.  However, the methods by moments are easy 
and simple to apply in practice and seem to give similar results to 
those by item characteristic methods in some situations (see e.g., 
Baker & Al-Karni, 1991; Hattori, 1998). 

The purpose of this article is to obtain the asymptotic standard 
errors of the estimates of the equating coefficients by the m/s, m/m and 
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m/gm methods with the assumption of the two-parameter logistic 
model and to compare their results with each other.  Baker and 
Al-Karni (1991) indicated that the m/m method is more stable than the 
m/s method.  This will be made clear using the asymptotic behavior 
of the estimated equating coefficients in simulated data.  The results 
by IRT in samples depend on the estimation methods of item (and 
ability) parameters.  Consequently, the asymptotic standard errors of 
the estimates of equating coefficients also depend on the asymptotic 
variances and covariances of the estimates of the IRT parameters.  
Historically, the joint maximum likelihood estimation of item and 
ability parameters was first developed (see e.g., Lord & Novick, 1968, 
Ch.17).  The asymptotic variances of the estimates of item 
parameters by this method are usually estimated from the information 
matrix of the estimated item parameters assuming that ability 
parameters are given (see e.g., Lord, 1980, p.191; Wainer & Thissen, 
1982).  Since they are underestimates of exact asymptotic variances, 
the standard error of an equating in IRT using the underestimates of 
the asymptotic variances-covariances is also an underestimate (see e.g. 
Lord, 1982).  The exact asymptotic variances by the joint maximum 
likelihood estimation may be obtained by assuming that both of the 
numbers of items and examinees become large.  However, this is an 
unrealistic assumption. 

In this article, we deal with the case when item parameters are 
estimated by the marginal maximum likelihood (Bock & Lieberman, 
1970; Bock & Aitkin, 1981) in which abilities are integrated out from 
the model.  Thus, the standard asymptotic theory applies to the 
estimates of the item parameters given by the method.  In the 
following sections, we will consider the case of internal common 
items.  The application to the external common items is 
straightforward and will be discussed in the final section. 
 
 

Equating Methods Using Moments 
We deal with the case of two independent nonequivalent 

examinee-groups (Groups 1 and 2): the examinees in Group 1 take 
Test 1 and those in Group 2 take Test 2.  The results for single 
examinee-group are essentially the same as far as the results in this 
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section are concerned.  Assume that the probability of a 
correct/incorrect response to the j-th common item by the i-th 
examinee in Group 1 is described by the two-parameter logistic 
model:  

1 1 1 1 1
1 1 1 1

1 1 1

1

1
1

1 1

P x a b a b x
a b

N

i j i j j
j i j i j

j i j

D
D

i j p

( | , , )
exp{ ( )( )}

exp{ ( )}
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− − −
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= =
 (1) 

where 1 1i jx =  denotes a correct response and 1 0i jx =  an 
incorrect response in the above situation; 1 iθ  is the ability score for 
the i-th examinee in Group 1; 1N  is the number of examinees in 
Group 1; 1 ja  and 1 jb  are the discrimination and difficulty 
parameters, respectively, for the j-th common item of Test 1; p is the 
number of common items; D=1.7 is a costant.  For Group 2, we have 

2 2 2 2 2
2 2 2 2

2 2 2

2

1
1

1 1

P x a b a b x
a b

N

i j i j j
j i j i j

j i j

D
D

i j p

( | , , ) exp{ ( )( )}
exp{ ( )}

,

( ,..., ; ,..., ),

θ θ
θ

=
− − −
+ − −

= =
(2) 

where notations are similarly defined.  The true values of the 
parameters in the j-th common item in Group 1, 1 ja  and 1 jb , are the 
same as those in Group 2, 2 ja  and 2 jb , respectively, if they are 
appropriately transformed.  In addition to the p common items, we 
assume that there are 

1q p−  and 
2q p−  unique items in Tests 1 and 

2, respectively.  That is, Tests 1 and 2 consist of 
1q  and 

2q  items, 

respectively.  The parameters for the unique items are 1 ja  and 1 jb , 

11j p q= + ,..., , for Test 1 and 2 ja  and 2 jb , 21j p q= + ,..., , for Test 
2. 

Equating is supposed to be performed such that the scale in Test 2 
is transformed to that in Test 1.  For model identification, we assume 

1 10 1 1i N i Nθ ~
i .i.d .

( , ), ,..,=  and 2 20 1 1i N i Nθ ~
i .i.d .

( , ), ,..,= .  Let 

 2 2 2 2i i j jA B Aa a* *, /θ θ= + =  and 2 2j jb bA B* = + .    (3) 
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Then, from (2) 

2 2 2 2 2 2 2 2 2 2

2 2
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P x a b P x a b
N q

i j i j j i j i j j

i j
( | , , ) ( | , , ),

( ,..., ; ,..., ).

* * *θ θ=

= =
       (4) 

For the p common items, if A and B are appropriately chosen, 

    1 2j ja a= *  and 1 2j jb b= * , ( ,.., ).j p= 1             (5) 
However, the equations of (5) hold only in populations.  In samples, 
the relationships in (5) are at most approximate ones.  Therefore, the 
task is to estimate A and B such that (5) holds as closely as possible.  
The estimates of A and B using moments are defined as follows: 
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for the m/s method, 
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for the m/m method and 
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for the m/gm method.  Note that in populations s m gA A A= =  
and s m gB B B= = . 
 
 

Asymptotic Standard Errors of Equating Coefficients 
From the definitions of the equating coefficients, we see that they 
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are functions of the item parameters.  Thus, the asymptotic 
variances-covariances of the estimates of the coefficients are obtained 
from the asymptotic variance-covariance matrix of the estimates of the 
item parameters by using the delta method.  Let 

1 1 1 1 1 11 11
1

j j ja b qj qα α α α= = =( , )' , ( ,..., ), ( ,..., )' ,' '  

2 2 2 2 2 21 21
2

j j ja b qj qα α α α= = =( , )' , ( ,..., ), ( ,..., )'' '  

and α α α= ( ' , ')'1 2 . 

(Note that α  represents the whole item parameters including the 
parameters for unique items in Tests 1 and 2.)  Then, the asymptotic 
variance-covariance matrix for the vector of the estimates ( , )'* *A B  
is 

  acov acov( , )' ( , )'
'

( ) ( , ) ,* *
* * * *A B A B A B= ∂
∂α

α ∂
∂α     (9) 

where *A  and *B  denote a pair of the equating coefficients.  
Because Group 1 is assumed to be independent of Group 2 in the case 
of two nonequivalent groups, 
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( )
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α
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⎡

⎣
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⎦
⎥

1

2

O
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In the case of single group, since the same examinees take two tests, 
we have 

acov
acov acov

acov acov
( )

( ) ( )
( ) ( )

;
;

α α α α
α α α

=
⎡

⎣
⎢

⎤

⎦
⎥

1 21

12 2

,     (11) 

where acov( );
12α α  is the covariance matrix of 2α  with respect 

to 1α  and acov acov( ) { ( )}'; ;
21 12α α α α= . 

The partial derivatives in (9) are obtained by elementary calculus 
and will be provided in Appendix for completeness.  Notice that the 
partial derivatives in (9) with respect to the parameters in the unique 
items in Tests 1 and 2 are zero since *A  and *B  do not include 
them.  The estimate of (9) is given by substituting the estimates of 
the item parameters for the true values in the right-hand side of (9) 
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The remaining task is to obtain acov( )α  in (10) and (11).  
First, we investigate the case of two nonequivalent groups.  The 
estimates of the item parameters for the 

1q  items including unique 
ones in Test 1 are obtained by maximizing the following marginal 
likelihood with the assumption of multivariate normality for abilities: 

1 1 1
1

1 1 1 1

1* ( | , ) ( )L L xi
i

i i i i

N
h d=

−∞

+∞

=
∫∏ α θ θ θ               (12) 
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∏               (13) 

     with 1 1 1 1
1

i i ix x x q= ( ,..., )'  and 

   h i
i( ) exp( )1

1
21

2 2θ θ
π

= − .                         (14) 

Since the integration in (12) is difficult to obtain, it is approximated by 
a numerical one to any desired accuracy as follows: 
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1
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m
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m i m i

i

N N
H≅ = ≡

== =
∑∏ ∏α α , (15) 

where 1y yr
,...,  are the quadrature points in the range for 1iθ  and 

H
my( )  are the weights for the quadrature points, which are 

proportional to h
my( )  with H

m

r

my
=
∑ =

1
1( )  and an adjustment to 

satisfy 
m

m

r

my yH2

1
1

=
∑ =( ) .  Let 1 1l L= ln .  Then, the maximization 

of 1L  in (15) is given by solving the equations: 
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is the posterior probability of my  given 1α  and 1ix .  Similar 
results are obtained for Group 2 with Test 2 using similar notations: 
∂
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The asymptotic variance-covariance matrix for 1α  is obtained 
from the inverse of the information matrix for the item parameters.  
However, since 12q  patterns in 1ix  are required to derive the exact 
information matrix (see, Bock & Lieberman, 1970), only the observed 
patterns for 1ix  are used as an approximation to the exact one, that 
is, 

( ) ' |I
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i
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g g
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1 1
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where 

1 1 1 1
1

i i i
g g g

q= ( ' ,..., ')'                          (20) 
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(see (16)).  The estimate of the asymptotic variance-covariance 
matrix for 1α  is obtained as: 

    acov( ) ( ( ))1 1

1α α= −I .                         (21) 
Similarly, we have 
    acov( ) ( ( ))2 2

1α α= −I .                           (22) 
Note that (21) and (22) hold also in the case of single group with some 
adaptations such as N N N= =1 2  ( 1

α  and 2
α  are assumed to 

be estimated separately in each test even in the case of single group). 
Finally, we derive acov( );

12α α  in (11) which is required in 
the case of single group.  By using the Taylor expansions of the 
observed gradient vectors of (16) and (18) at the true values of the 
parameters with large N N N( )= =1 2 , we have approximately 
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=
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Hence, taking the expectation of ( )( )'2 2 1 1α α α α− −  in large 

samples and noting that 
1i
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2 j
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=
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For the estimates of I ( )1α  and I ( )2α  in (24), we can again use 
(21) and (22). 

The term of E( )⋅  in the right-hand side of (24) is obtained as: 
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where 
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12 1
1

1 2 21 2 1 2
f x x L y x L y x yk k k ki

m

r

m i m m
H( , | ) ( | , ) ( | , ) ( );α α α=

=
∑ (26) 

1kx  is the 1k -th possible response pattern for 1ix , ( 1 1 12k q= ,..., ); 

2kx  is the 2k -th possible response pattern for 
2ix , ( 2 1 22k q= ,..., ).  

The values 12q  and 22q  become soon large with moderate 1q  and 

2q .  Therefore, a practical estimate of (25) is simply 
2

1
1i

i

N

i
g g

=
∑ '  

with α α= , which is an approximation using only the observed 
patterns of 1ix  and 2 1ix i N, ( ,..., )= . 
 
 

Mean Standard Error of Equated Scores 
The ability score in Group 2, 2 iθ , is transformed to the score in 

Group 1 by using the estimates of the equating coefficients *A  and 

*B : 

    2 2 21
i iA B Ni*

* *, ( ,..., )θ θ= + = .                 (27) 

To evaluate the overall stability of *A  and *B , it is convenient to 
calculate the standard error of the equated score at 2 iθ : 

 
SE avar
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( ) ( )
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*
* *

* * * *

2 2

2
2

22
i i

i i

A B

A A B B

θ θ

θ θ

= +

= + +
     (28) 

The mean standard error of the equated score is obtained from the 
integration over the distribution of 2 iθ : 

avar

avar avar
−∞

+∞

∫ +

= +

( ) ( )

( ) ( )
* *

* *

A B

A B

i i ih d2 2 2θ θ θ
.                  (29) 

The estimate of (29) is given by replacing the true values of the 
parameters in (29) by their estimates (see also, Kolen & Brennan, 
1995, Ch.7). 
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Numerical Examples 

To confirm the accuracy of the estimated standard errors for the 
equating coefficients, we have performed a simulation with true 
values.  The first half of the simulation is for the case of two 
nonequivalent groups and the second half for the case of single group.  
In the first half, the numbers of common items are set at 10 or 15 with 
the same numbers of unique items in Tests 1 and 2.  That is, Tests 1 
and 2 have 20 or 30 items including the common items.  The 
population values of discrimination parameters were randomly 
generated by the uniform distribution with the range (.3, 1.3).  The 
population difficulty parameters were also randomly generated by the 
normal distribution N(0, 1).  The observed values of item responses 
in Group 1 were generated by using the probability function of (1) 
with the random number following N(0, 1) for 1 i θ .  For Group 2, 

2

i. i. d

i Nθ ~ (. , . )
.

5 12 2  was employed for the generation of the observed 
responses.  Consequently, if estimation is exact, * *. , .A B= =12 5 
should be obtained.  The number of examinees in each group is 1,000 
(Case A) or 2,000 (Case B) when the number of common items is 10; 
and 1,000 when the number of common items is 15 (Case C).  When 
the number of common items is 10, the same set of population values 
are used for the cases of N=1,000 and N=2,000.  The numbers of 
quadrature points in the numerical approximation of the integration of 
ability parameters are 5, 10 or 15.  The estimation of the equating 
coefficients was repeated 100 times in each condition.  That is, 100 
estimates for each coefficient were obtained with 100 estimates of its 
asymptotic standard error. 
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 Table 1. Means of estimated equating coefficients for nonequivalent  
 groups; number of sets of samples =100, population values 
 for A (B)=1.2(.5). 

                     Case A
Number of common items:  10 
Number of observations:  1,000
Number of quadrature points: 
          5     10     15 

       Case B 
          10 
        2,000 
 
   5    10     15 

      Case C 
         15 
       1,000 
 
   5    10    15 

  As 1.189 1.214 1.210 
  Bs .522 .505 .502 
  Am 1.168 1.205 1.203 
  Bm .505 .499 .497 
  Ag 1.172 1.206 1.204 
  Bg .508 .500 .498 

 1.175 1.203 1.199
 .518 .503 .500
 1.168 1.207 1.205
 .513 .507 .506
 1.170 1.206 1.205
 .515 .507 .505

 1.118 1.179 1.185
 .502 .496 .504
 1.118 1.189 1.192
 .503 .499 .507
 1.119 1.189 1.192
 .503 .499 .507

 
Tables 1 through 5 show the results for two nonequivalent groups.  

Table 1 shows the means of the estimated coefficients over 100 sets of 
samples.  The table indicates that the estimates are somewhat biased 
when the number of quadrature points is 5.  By increasing the 
number as large as 10, the biases are to a large extent reduced.  The 
results of N=2,000 (Case B) are not so different from those of 
N=1,000 (Case A).  Table 2 shows the results of theoretical and 
simulated standard errors for Case A.  The SD is the standard 
deviation of the estimates of a coefficient or a statistic (the mean 
standard error of equated scores) over 100 sets of samples.  The M of 
SE is the mean of estimated standard errors over 100 sets of samples.  
The SD of SE is the standard deviation of the estimated standard errors.  
If the estimated asymptotic standard errors are close to exact values, 
the M’s of SE should be close to the corresponding SD’s which are the 
actual standard deviation of the estimates and the SD’s of SE should 
be small.  From the table, we see that when the number of quadrature 
points is 5, the asymptotic standard errors for *B  seem to be 
underestimates.  However, they become rather accurate when the 
number of quadrature points is as large as 10.  Among the three 
methods, m/s, m/m and m/gm, the m/s method is always inferior to the 



 13

other two methods.  This is clearly shown in the large standard errors 
for sA , which supports the discussion of Baker and Al-Karni (1991).  
Table 3 shows the results for Case B, which are similar to Table 2 
except the overall level of values.  Note that the standard errors are 
proportional to 1/ N .  Thus, we see that the values of SD and M of 
SE in Table 3 are approximately 1 2/  of corresponding values in 
Table 2 (notice that the same population values for item parameters 
are used in Cases A and B). 
 
 
 
    Table 2. Results for nonequivalent groups (Case A); number of  

common items = 10, number of observations in each sample  
    = 1,000, number of sets of samples = 100. 

Number of 
quadrature 
points 

        5 
 SD   M    SD 
     of SE  of SE

       10 
 SD   M    SD 
     of SE  of SE

       15 
 SD   M    SD 
     of SE  of SE 

(1) Equating coefficients 
     As 
     Bs 
     Am 
     Bm 
     Ag 
     Bg 

 .122  .124  .018 
 .099  .079  .010 
 .053  .050  .003 
 .088  .066  .006 
 .054  .054  .003 
 .084  .060  .004 

 .128  .129  .019 
 .084  .086  .009 
 .062  .061  .003 
 .080  .076  .005 
 .063  .063  .004 
 .073  .071  .003 

 .129  .130  .019 
 .084  .086  .009 
 .062  .062  .003 
 .080  .076  .005 
 .063  .064  .004 
 .073  .070  .003 

(2) Mean of standard error of equated scores 
    m/s 
    m/m 
    m/gm 

 .157  .147  .020 
 .103  .083  .005 
 .100  .080  .005 

 .153  .155  .020 
 .101  .097  .006 
 .096  .095  .005 

 .154  .156  .020 
 .101  .098  .006 
 .097  .095  .005 

     Note. SD = standard deviation of estimates of a parameter or a statistic; M of SE  
      = mean of estimated standard errors; SD of SE = standard deviation of estimated  
      standard errors. 
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     Table 3. Results for nonequivalent groups (Case B); number of 
    common items = 10, number of observations in each sample 
    = 2,000, number of sets of samples = 100. 

Number of 
quadrature 
points 

        5 
 SD   M    SD 
     of SE  of SE

       10 
 SD   M    SD 
     of SE  of SE

       15 
 SD   M    SD 
     of SE  of SE 

(1) Equating coefficients 
     As 
     Bs 
     Am 
     Bm 
     Ag 
     Bg 

 .081  .084  .008 
 .073  .054  .005 
 .035  .035  .001 
 .067  .046  .002 
 .039  .038  .002 
 .065  .041  .002 

 .087  .087  .008 
 .056  .059  .004 
 .041  .042  .002 
 .050  .053  .002 
 .045  .044  .002 
 .046  .049  .002 

 .088  .088  .009 
 .055  .059  .004 
 .042  .043  .002 
 .050  .053  .002 
 .046  .045  .002 
 .046  .049  .002 

(2) Mean of standard error of equated scores 
    m/s 
    m/m 
    m/gm 

 .109  .099  .009 
 .075  .058  .002 
 .076  .056  .002 

 .104  .106  .009 
 .065  .068  .002 
 .065  .066  .002 

 .104  .106  .009 
 .065  .069  .003 
 .065  .067  .002 

     Note. SD = standard deviation of estimates of a parameter or a statistic; M of SE  
      = mean of estimated standard errors; SD of SE = standard deviation of estimated  
      standard errors. 
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     Table 4. Results for nonequivalent groups (Case C); number of 
    common items = 15, number of observations in each sample 
    = 1,000, number of sets of samples = 100. 

Number of 
quadrature  
points 

        5 
 SD   M    SD 
     of SE  of SE

       10 
 SD   M    SD 
     of SE  of SE

       15 
 SD   M    SD 
     of SE  of SE 

(1) Equating coefficients 
     As 
     Bs 
     Am 
     Bm 
     Ag 
     Bg 

 .051  .047  .005 
 .094  .049  .005 
 .046  .040  .002 
 .092  .044  .003 
 .045  .039  .002 
 .092  .044  .003 

 .059  .056  .005 
 .072  .063  .004 
 .056  .052  .003 
 .069  .060  .002 
 .054  .050  .002 
 .069  .060  .002 

 .060  .060  .006 
 .074  .065  .004 
 .056  .055  .003 
 .071  .062  .002 
 .054  .054  .003 
 .071  .062  .002 

(2) Mean of standard error of equated scores 
    m/s 
    m/m 
    m/gm 

 .107  .068  .006 
 .103  .060  .003 
 .102  .059  .003 

 .093  .084  .006 
 .089  .079  .003 
 .088  .078  .003 

 .095  .088  .006 
 .091  .082  .003 
 .089  .082  .003 

     Note. SD = standard deviation of estimates of a parameter or a statistic; M of SE  
      = mean of estimated standard errors; SD of SE = standard deviation of estimated  
      standard errors. 
 
   Table 5. Correlations between estimated equating coefficients  

(Case A); number of common items = 10, number of observations 
 in each sample = 1,000, number of sets of samples = 100,  
 number of quadrature points = 10. 

    As     Bs        Am     Bm         Ag        Bg 
 As 
 Bs 

 Am 
 Bm  
 Ag 

 Bg 

 1.00 .68 (.03) .38 (.03) -.32 (.09) .58 (.03) -.20 (.08) 
 .64 1.00 .17 (.03) .33 (.12) .30 (.04) .45 (.10) 
 .41 .18 1.00 .31 (.04) .94 (.01) .32 (.04) 
 -.36 .34 .29 1.00 .16 (.07) .98 (.003) 
 .59 .27 .95 .12 1.00 .23 (.06) 
 -.26 .44 .30 .98 .18 1.00 

   Note. The lower half indicates the correlations of estimates of the coefficients. 
    The upper half indicates the means (standard deviations) of the estimated 
    asymptotic correlations for the estimates of the coefficients. 
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Table 4 gives the results for Case C, where the number of 

common items is 15.  Surprisingly, the differences between the three 
methods which were observed in Tables 2 and 3 have almost 
disappeared, though the m/s method is still the worst one.  Note that 
the tendency of the underestimates of *B  is stronger than those in 
Table 2 and 3 when the number of quadrature points is 5.  Table 5 
gives the observed correlations of the estimates of the coefficients, and 
the means (standard deviations) of the estimated asymptotic 
correlations over 100 sets of samples.  The actual correlations are 
close to mean theoretical values.   The pairs of ( gA  and mA ) and 

( gB  and mB ) have high correlations within each pair, which 
suggests the closeness of the m/m and m/gm methods. 

Tables 6 and 7 show the results for single group (Case A’).  The 
population values for item parameters are the same as those for Cases 
A and B.  The number of observations is 1,000.  Since the same 
examinees respond to the items in Tests 1 and 2, 1 i θ  is set equal to 

2  i θ  when random responses are generated.  Thus, if the estimation 
is exact, *A = 1 and *B = 0 should be obtained.  In Tables 6 and 
7, we observe the similar tendencies which were shown in Tables 1 
and 2.  However, the standard errors for Case A’ are reduced from 
those for Case A.  This is theoretically expected from the signs of 
partial derivatives (see Appendix) and the non-negligible positive 
covariances between 1α  and 2α  for the case of single group. 
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     Table 6. Means of estimated equating coefficients for 
    single group (Case A’); number of common items = 10, 
    number of observations in each sample = 1,000, 
    number of samples = 100, population values for A (B) = 1 (0). 
 

  Number of quadrature points 
    5        10        15

 As 
 Bs 

 Am 
 Bm  
 Ag 

 Bg 

 1.013 1.007 1.007
 -.011 -.004 -.003
 1.010 1.000 1.000
 -.012 -.005 -.005
 1.009 1.000 .999
 -.012 -.006 -.005

 
     Table 7. Results for single group (Case A’); number of common  
    items = 10, number of observations in each sample = 1,000,  
    number of samples = 100. 

Number of 
quadrature  
points 

        5 
 SD   M    SD 
     of SE  of SE

       10 
 SD   M    SD 
     of SE  of SE

       15 
 SD   M    SD 
     of SE  of SE 

(1) Equating coefficients 
     As 
     Bs 
     Am 
     Bm 
     Ag 
     Bg 

 .092  .101  .015 
 .061  .044  .004 
 .036  .038  .002 
 .066  .056  .006 
 .040  .042  .002 
 .062  .051  .005 

 .091  .100  .014 
 .037  .039  .003 
 .038  .038  .002 
 .049  .051  .006 
 .042  .042  .003 
 .044  .046  .005 

 .091  .101  .014 
 .037  .038  .003 
 .038  .038  .002 
 .049  .051  .006 
 .042  .042  .003 
 .044  .046  .005 

(2) Mean of standard error of equated scores 
    m/s 
    m/m 
    m/gm 

 .110  .110  .014 
 .075  .067  .006 
 .074  .066  .005 

 .098  .107  .014 
 .062  .064  .005 
 .061  .063  .005 

 .098  .108  .014 
 .062  .064  .005 
 .061  .063  .005 

     Note. SD = standard deviation of estimates of a parameter or a statistic.; M of SE  
      = mean of estimated standard errors; SD of SE = standard deviation of estimated  
      standard errors.
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     Table 8. Results for Kolen and Brennan’s (1995) data; 
    number of common items = 12, number of items in each test 
    = 36, numbers of observations in each group = 1655 (Test X) 
    and 1638 (Test Y), number of quadrature points = 10. 

     Estimates  SE            Asymptotic correlations 
As 1.009 .070 1.00 
Bs -.375 .069 -.06 1.00 
Am .961 .041 .57 -.30 1.00 
Bm -.349 .078 .26 .92 -.28 1.00 
Ag .970 .044 .73 -.20 .94 -.10 1.00 
Bg -.354 .075 .21 .94 -.29 .995 -.14 1.00 
Mean standard error of equated scores 
  m/s:  .099,   m/m:  .088,   m/gm:  .087 

     Note. SE = standard error of estimates. 
 

Table 8 shows the results for a real data set.  The data from 
Kolen and Brennan (1995, Appendix B) are used: Tests X and Y 
consisting of 36 items in each test have 12 internal common items and 
were administered to 1,655 and 1,638 examinees, respectively.  The 
equating was performed by assuming that the groups are independent 
nonequivalent ones.  The transformation in the equating was from the 
scale of Test X to that of Test Y in the two-parameter logistic model.  
Ten quadrature points were used for the numerical integration of 
abilities.  The estimated coefficients for the m/s method are 
somewhat different from those for the m/m and m/gm methods.  To 
the contrary of the simulated results, the standard error for sB  is 
smaller than those for mB  and gB .  However, the mean standard 
error of equated scores for the m/s method is greater than those for the 
m/m and m/gm methods as was the case for simulated data.  The 
estimated asymptotic correlations show a close relationship between 
m/m and m/gm methods. 
 
 

Conclusion 
The simulated results in the previous section are based on 
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restricted conditions.  However, the results are rather clear and 
indicates that when the number of common items are small such as 10, 
the results of m/s method are inferior to those by the m/m and m/gm 
methods.  The differences between three methods seem to decrease 
with the increase of the number of common items.  Except for the 
unusual case when only the estimates of difficulties are available, we 
have no reason to employ the m/s method.  The m/m method is 
recommended from its simplicity among the three methods as long as 
the evidence of the superiority of the m/gm method is not provided. 

The marginal likelihood estimation of item parameters employs 
numerical integration.  The estimates of the equating coefficients are 
directly influenced by the number of quadrature points in the 
numerical integration.  The number should be as large as 10. 
 
 

Discussion 
Up to now, the situation of internal common items has been 

assumed.  If external common items are used, the asymptotic 
covariance matrix of (10) and (11) should be reformulated in the 
following way.  We assume the same number of common item as 
before.  That is , the p common items are supposed to constitute the 
anchor test (Test 3).  Tests 1 and 2 are composed of only unique 
items whose numbers are 1q p−  and 2q p− , respectively.  The 
difference between this situation and that of internal common items is 
that the estimation of the item parameters are performed separately for 
Tests 1, 2 and 3 in the case of external common items.  The 
parameters of the common items may be estimated jointly with those 
for Test 1 or Test 2.  For this case, the situation becomes essentially 
equivalent to that with internal common items as long as the 
asymptotic behavior of the estimates of equating coefficients are 
concerned. 

Let 1α  and 2α  be the vectors of the item parameters for 
Group 1 (Tests 1 and 3) and Group 2 (Tests 2 and 3), respectively as 
was the case for internal common items.  The subvectors in 1α  and 

2α  are defined: 
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1 1 1
α β γ= ( ', ')'  and 2 2 2

α β γ= ( ', ')' , where  

1 11 11 1 1β = ( , ,..., , )'a b a bp p  and 
2 21 21 2 2β = ( , ,..., , )'a b a bp p  

are the parameters for Test 3 (the anchor test), while  

1 1 1 1 1 1 1
1 1

γ = + +( , ,..., , )', ,p pa b a bq q  and 

 2 2 1 2 1 2 2
2 2

γ = + +( , ,..., , )', ,p pa b a bq q  are the parameters for 

Tests 1 and 2, respectively.  Let α α α= ( ', ')'1 2  as before.  

Then, the asymptotic variance-covariance matrix of α  for the case 
of two nonequivalent groups becomes 

acov
acov

acov
( )

( )
( )

α α
α
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⎥
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 (31) 

with 
β k i

g  and γ k i
g  being the subvectors in 

k i
g  (see (20) with 

(16) and (18)) for the parameters 
k

β  and 
k

γ , respectively.  In the 

case of single group, the asymptotic cross covariance matrix for 2α  

with respect to 1α  becomes 
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(32) 

The estimates of (31) and (32) are given by substituting the estimates 
of the parameters for their true values, and the observed values for 
E( )⋅ .  Since the partial derivatives of the equating coefficients with 
respect to 

1
γ  and 

2
γ  are zero, only the upper-left submatrices in 

(31) and (32) are used in actual computation for avar( )*A  and 

avar( )*B .  However, other submatrices become necessary when we 
consider the asymptotic variances and covariances of equated item 
parameters and their functions in Tests 1 and 2. 
 
 
Appendix  The Partial Derivatives of the Equating Coefficients 
with respect to the Item Parameters 

For the m/s method (see (6)), the nonzero partial derivatives are 
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For the m/m method (see (7)), the nonzero partial derivatives are 
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For the m/gm method (see (8)), the nonzero partial derivatives are 
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