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Abstract

The asymptotic standard errors of the IRT equating coefficients
given by the mean/sigma, mean/mean and mean/geometric mean
methods are derived when the two-parameter logistic model holds and
item parameters are obtained by the marginal maximum likelihood
estimation. The case of two nonequivalent examinee-groups and the
case of single group are considered. The numerical examples show
that the mean/mean and mean/geometric mean methods are superior to
the mean/sigma method. The results also show that the number of
quadrature points in the numerical approximation to the integration of
ability parameters is crucial to the estimation of the asymptotic
standard errors.
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Test equating becomes necessary when the scale of a test is to be
compared with the scale of another test. If the two tests are
composed of items whose characteristics are given by applying item
response theory (IRT) separately to each test, the results of one of the
tests can not directly be compared to those of another test. This
comes from the fact that usually the abilities of examinees in a test are
standardized with mean zero and unit variance to remove the
indeterminacy of an IRT model. Hence, the estimates of item
parameters (and abilities if necessary) in one test should be
transformed to the scales of the parameters of another test by equating.

In IRT equating, the method of common items is often used in the
above situation. The common items may be part of each test
(internal items) or external ones. A simple equating procedure in
such situations with common items is that of using moments (means
and standard deviations) of the estimates of the common items.
From the property of the IRT model, the transformation for the
parameters in equating should be linear. The equating coefficients
are estimated as the slope and intercept in the linear transformation.
Marco (1977) used the means and standard deviations of difficulty
parameters. This is called the mean/sigma (m/s) method. Shiba
(1978) used the means of discrimination parameters in addition to
those of difficulty parameters. Loyd and Hoover (1980) used a
similar method in the Rasch model. This is called the mean/mean
(m/m) method. As a variation of the m/m method, Mislevy and Bock
(1990) (see also Kolen & Brennan, 1995, Ch.6) proposed a method
using the geometric means of discrimination parameters and the
arithmetic means of difficulty parameters. This is called the
mean/geometric mean (m/gm) method in this article.

Other methods using the item/test characteristic curves (Haebara,
1980; Stocking & Lord, 1983) have also been developed. These
methods are more sophisticated than the methods using moments of
the item parameters. However, the methods by moments are easy
and simple to apply in practice and seem to give similar results to
those by item characteristic methods in some situations (see e.g.,
Baker & Al-Karni, 1991; Hattori, 1998).

The purpose of this article is to obtain the asymptotic standard
errors of the estimates of the equating coefficients by the m/s, m/m and



m/gm methods with the assumption of the two-parameter logistic
model and to compare their results with each other. Baker and
Al-Karni (1991) indicated that the m/m method is more stable than the
m/s method. This will be made clear using the asymptotic behavior
of the estimated equating coefficients in simulated data. The results
by IRT in samples depend on the estimation methods of item (and
ability) parameters. Consequently, the asymptotic standard errors of
the estimates of equating coefficients also depend on the asymptotic
variances and covariances of the estimates of the IRT parameters.
Historically, the joint maximum likelihood estimation of item and
ability parameters was first developed (see e.g., Lord & Novick, 1968,
Ch.17).  The asymptotic variances of the estimates of item
parameters by this method are usually estimated from the information
matrix of the estimated item parameters assuming that ability
parameters are given (see e.g., Lord, 1980, p.191; Wainer & Thissen,
1982). Since they are underestimates of exact asymptotic variances,
the standard error of an equating in IRT using the underestimates of
the asymptotic variances-covariances is also an underestimate (see e.g.
Lord, 1982). The exact asymptotic variances by the joint maximum
likelihood estimation may be obtained by assuming that both of the
numbers of items and examinees become large. However, this is an
unrealistic assumption.

In this article, we deal with the case when item parameters are
estimated by the marginal maximum likelihood (Bock & Lieberman,
1970; Bock & Aitkin, 1981) in which abilities are integrated out from
the model. Thus, the standard asymptotic theory applies to the
estimates of the item parameters given by the method. In the
following sections, we will consider the case of internal common
items. The application to the external common items is
straightforward and will be discussed in the final section.

Equating Methods Using Moments
We deal with the case of two independent nonequivalent
examinee-groups (Groups 1 and 2): the examinees in Group 1 take
Test 1 and those in Group 2 take Test 2. The results for single
examinee-group are essentially the same as far as the results in this



section are concerned. Assume that the probability of a
correct/incorrect response to the j-th common item by the i-th
examinee in Group 1 is described by the two-parameter logistic

model:
exp{_Dalj(Hli_blj)(l_X1ij)}
P. 1i | Hli’ 1j’b1j = ,
(X | 2 ) 1+eXp{_Da1j(91i_b1j)} (1)

(i=1..N.;j=1...p)

where xlij=1 denotes a correct response and xli,-:O an

incorrect response in the above situation; @, is the ability score for
the i-th examinee in Group 1; N, is the number of examinees in

Group 1; a and [, are the discrimination and difficulty

parameters, respectively, for the j-th common item of Test 1; p is the
number of common items; D=1.7 is a costant. For Group 2, we have

_ exp{_Dazj(HZi _ij)(l_ X2ij)}
P2(X2ij|02i’a21’b21) 1+exp{_Da2j(02i_b2j)} ’(2)

(i=1..,N,;j=1...p)

where notations are similarly defined. The true values of the
parameters in the j-th common item in Group 1, @,; and p,;, are the

same as those in Group 2, a,; and D,;, respectively, if they are
appropriately transformed. In addition to the p common items, we
assume that there are ¢,— p and Q,— p unique items in Tests 1 and

2, respectively. That is, Tests 1 and 2 consist of q, and Q, items,

respectively. The parameters for the unique items are a,; and blj,
J=p+1,...,q,, for Testland a,; and b,;, J=p+1,..q,, for Test

2.
Equating is supposed to be performed such that the scale in Test 2
Is transformed to that in Test 1. For model identification, we assume

.. ~ N(©,1),i=1..N, and g, ~ NO.1),i=1.. N, Let

*

92i2A92i+B1 a;j:az,-/A and b;j:Asz—l_B' (3)



Then, from (2)
Pz(XZij|92i!a2jlb2j) — Pz(Xza,~|92na:j,b;)’
(i =1 N2 j =1,,).

For the p common items, if A and B are appropriately chosen,

a,;=a; and by =Dy, (J=1..,p). (5)
However, the equations of (5) hold only in populations. In samples,
the relationships in (5) are at most approximate ones. Therefore, the
task is to estimate A and B such that (5) holds as closely as possible.
The estimates of A and B using moments are defined as follows:

> 6.~ @/ B,
>~ P,
és - (1/ p)éb\lj - As(ll p)jZ:b\Zj
for the m/s method,
Amzééu‘/;élj, (7)
ém = (1/ p)Z:;Blj o Am(ll p)Z:];E)\ZJ
for the m/m method and

Ag= (ljaz,. [8.)", ()

Bo=/P)YB,~ Agl/ 2B,
for the m/gm method. Note that in populations As= Am= Ag
and Bs=Bm= Bg-

(4)

(6)

Asymptotic Standard Errors of Equating Coefficients
From the definitions of the equating coefficients, we see that they



are functions of the item parameters. Thus, the asymptotic
variances-covariances of the estimates of the coefficients are obtained
from the asymptotic variance-covariance matrix of the estimates of the
item parameters by using the delta method. Let

Qlj:(alwblj)"(j:]-’---’ql); Ql:(glﬂ,--.,
sz:(azj’sz)li (J :1,---,C|2), sz(glm,...,
and a=(a,a,)"

(Note that & represents the whole item parameters including the
parameters for unique items in Tests 1 and 2.) Then, the asymptotic
variance-covariance matrix for the vector of the estimates (A*, B*)'

IS

Qllql)"
a'sq)

0f>( A*’ B*)'

acoV( A«, B+)'= Py acov(a) (A~ B) ,

Py (9)
where A. and B. denote a pair of the equating coefficients.

Because Group 1 is assumed to be independent of Group 2 in the case
of two nonequivalent groups,

~ | acov(a,) O
acov(a) = - A
O acov(,)
In the case of single group, since the same examinees take two tests,

we have
A acov(q,)  acov(d,; a,)
acov(a) = oA ~ | ay
acov(q,; &)  acov(q,)

where acov(q,; Ql) IS the covariance matrix of QAZ with respect

to ¢, and acov(q,; a,)={acov(a,; )}
The partial derivatives in (9) are obtained by elementary calculus
and will be provided in Appendix for completeness. Notice that the

partial derivatives in (9) with respect to the parameters in the unique
items in Tests 1 and 2 are zero since A. and B. do not include

them. The estimate of (9) is given by substituting the estimates of
the item parameters for the true values in the right-hand side of (9)

(10)



The remaining task is to obtain acov(Q) in (10) and (11).
First, we investigate the case of two nonequivalent groups. The
estimates of the item parameters for the , items including unique

ones in Test 1 are obtained by maximizing the following marginal
likelihood with the assumption of multivariate normality for abilities:

* N, +o0

L. =11J, Lu(al6..x.)h(6.)d 6. (12)
where
g,

Lli (Qllgli ’Xli) = ]:! Pl(Xlij |01i ’Q“) (13)

with X, = (X1i11---;X1iql)' and

_ 1 b

h(0.)= mexp( 5 ). (14)

Since the integration in (12) is difficult to obtain, it is approximated by
a numerical one to any desired accuracy as follows:

N N, r N,
L.z L. =112 Lilaly. . x,)H(Yy )= [ f(xla), 15)

i=1 m=1
where Y ,..., Y, are the quadrature points in the range for @, and
H(y ) are the weights for the quadrature points, which are

proportional to h(y ) with erH(ym)zl and an adjustment to

satisfy Zr:yan(ym):l. Let |,=InL,. Then, the maximization

of L, in(15) is given by solving the equations:



ﬁll N; - ZIn Pl(Xlijlym'Qlj) v L. (Q1|ym’X1i)H(ym)

é)glj =1 m=1 é)alj f (X1i|gl)
N, « y le
;;{xh, P.(x.:; =1y, al,)}D( j¢(y | X, ) (16)
N, .

=20,0 (i=1..0)

where

_ La(e ]y, x)H(Y,)
¢1(ym|X1i ’Ql) - .I: l(x1i |Q1) ! (17)

(m=1,..ri=1..,N.)
is the posterior probability of Yy given ¢, and X;. Similar
results are obtained for Group 2 with Test 2 using similar notations:

e S S = Pl = Y. @)}
QZJ i=1 m=1

(y bz,j¢ (Y IX, ) = %—;gm, (18)
(] :1,...,q2).

The asymptotic variance-covariance matrix for Ql is obtained
from the inverse of the information matrix for the item parameters.

However, since 2% patterns in X, are required to derive the exact
information matrix (see, Bock & Lieberman, 1970), only the observed
patterns for X, are used as an approximation to the exact one, that

"(¢)=29,9,, (19)

gli - (glill""’g l)' (20)



(see (16)). The estimate of the asymptotic variance-covariance
matrix for ¢, is obtained as:

acov(ad,) = (I(a)* 1)
Similarly, we have
acov(a,) = (1(a.)) " (22)

Note that (21) and (22) hold also in the case of single group with some

adaptations such as N = N,= N, (a, and &, are assumed to

be estimated separately in each test even in the case of single group).
Finally, we derive acov(@z; QAl) in (11) which is required in

the case of single group. By using the Taylor expansions of the
observed gradient vectors of (16) and (18) at the true values of the

parameters with large N (= N.= N 2) , we have approximately

N A ~ N
—a, = (1 (gl))*;g“, a,—a,=1(a)) IZ_l:QZi .(23)
Hence, taking the expectation of (QAZ—QZ)(QAl—Ql)' in large

samples and noting that g, and §, (I # ]) are independent, we
have

acov(@,;d) = (&) "EC0,9,)(1@)". e

For the estimates of |(&,) and 1(&,) in (24), we can again use
(21) and (22).
The term of E() in the right-hand side of (24) is obtained as:
e fL(x X, )

E(Zg 9,)=N2>

kit f (Xk |O!1) f (Xk |0[ )

Ot (x ) O ,(x, la)
X 2 1
oa, da,’

(25)

where



Fo(xox 1) =2 Lulaly, X ) La(ely, x JH(Y, ) (26)
X, isthe k,-th possible response pattern for X.., (k.= 1,...,2%);

1

X, s the k,-th possible response pattern for x_, (k,= 1,...,2%).

2

The values 2% and 2qz become soon large with moderate (, and
N

g,. Therefore, a practical estimate of (25) is simply ZQZigli'
i=1—

with & = QA which is an approximation using only the observed
patterns of X, and X,,(1=1,..,N).

Mean Standard Error of Equated Scores
The ability score in Group 2, @.,;, is transformed to the score in

Group 1 by using the estimates of the equating coefficients A* and
é*:
éZi: A*92i+é*1 (l :1,...,N2). 27)

To evaluate the overall stability of A* and Bx, it is convenient to
calculate the standard error of the equated score at @,;:

SE(9,) =Javar(A.0., + B.)
= \Javar( A.) @, +2 acov( A.; B+) 0 +avar(B.).

The mean standard error of the equated score is obtained from the
integration over the distribution of @,,:

JIavar( A, + BIN(9.)d 6,
= Javar(AJ) +avar(B.)

The estimate of (29) is given by replacing the true values of the
parameters in (29) by their estimates (see also, Kolen & Brennan,
1995, Ch.7).

(28)

(29)
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Numerical Examples

To confirm the accuracy of the estimated standard errors for the
equating coefficients, we have performed a simulation with true
values. The first half of the simulation is for the case of two
nonequivalent groups and the second half for the case of single group.
In the first half, the numbers of common items are set at 10 or 15 with
the same numbers of unique items in Tests 1 and 2. That is, Tests 1
and 2 have 20 or 30 items including the common items. The
population values of discrimination parameters were randomly
generated by the uniform distribution with the range (.3, 1.3). The
population difficulty parameters were also randomly generated by the
normal distribution N(0, 1). The observed values of item responses
in Group 1 were generated by using the probability function of (1)

with the random number following N(0, 1) for &,;. For Group 2,
i.i.d.

G, ~ N(.5, 12%) was employed for the generation of the observed
responses. Consequently, if estimation is exact, Ax=12, B»=5

should be obtained. The number of examinees in each group is 1,000
(Case A) or 2,000 (Case B) when the number of common items is 10;
and 1,000 when the number of common items is 15 (Case C). When
the number of common items is 10, the same set of population values
are used for the cases of N=1,000 and N=2,000. The numbers of
quadrature points in the numerical approximation of the integration of
ability parameters are 5, 10 or 15. The estimation of the equating
coefficients was repeated 100 times in each condition. That is, 100
estimates for each coefficient were obtained with 100 estimates of its
asymptotic standard error.

11



Table 1. Means of estimated equating coefficients for nonequivalent
groups; number of sets of samples =100, population values
for A (B)=1.2(.5).

Case A Case B Case C

Number of common items: 10 10 15

Number of observations: 1,000 2,000 1,000

Number of quadrature points:

5 10 15 5 10 15 5 10 15
As 1.189 1.214 1.210 1.175 1.203 1.199 | 1.118 1.179 1.185
Bs 522 505 .502 518 503 .500 502 496 504
Am 1.168 1.205 1.203 1.168 1.207 1.205| 1.118 1.189 1.192
Bm 505 499 497 513 507 .506 503 499 507
Ag 1.172 1.206 1.204 1.170 1.206 1.205| 1.119 1.189 1.192
By 508 500 .498 515 507 505 503 499 507

Tables 1 through 5 show the results for two nonequivalent groups.
Table 1 shows the means of the estimated coefficients over 100 sets of
samples. The table indicates that the estimates are somewhat biased
when the number of quadrature points is 5. By increasing the
number as large as 10, the biases are to a large extent reduced. The
results of N=2,000 (Case B) are not so different from those of
N=1,000 (Case A). Table 2 shows the results of theoretical and
simulated standard errors for Case A. The SD is the standard
deviation of the estimates of a coefficient or a statistic (the mean
standard error of equated scores) over 100 sets of samples. The M of
SE is the mean of estimated standard errors over 100 sets of samples.
The SD of SE is the standard deviation of the estimated standard errors.
If the estimated asymptotic standard errors are close to exact values,
the M’s of SE should be close to the corresponding SD’s which are the
actual standard deviation of the estimates and the SD’s of SE should
be small. From the table, we see that when the number of quadrature

points is 5, the asymptotic standard errors for |§* seem to be

underestimates. However, they become rather accurate when the
number of quadrature points is as large as 10. Among the three
methods, m/s, m/m and m/gm, the m/s method is always inferior to the

12



other two methods. This is clearly shown in the large standard errors
for AS, which supports the discussion of Baker and Al-Karni (1991).

Table 3 shows the results for Case B, which are similar to Table 2
except the overall level of values. Note that the standard errors are
proportional to 1/+/N . Thus, we see that the values of SD and M of
SE in Table 3 are approximately 1/+/2 of corresponding values in
Table 2 (notice that the same population values for item parameters
are used in Cases A and B).

Table 2. Results for nonequivalent groups (Case A); number of
common items = 10, number of observations in each sample
= 1,000, number of sets of samples = 100.

Number of 5 10 15
quadrature SO M SD SO M SD SO M SD
points of SE of SE of SE of SE of SE of SE
(1) Equating coefficients
As 122 124 018 128 .129 .019 129 .130 .019
Bs 099 .079 .010 | .084 .086 .009 .084 .086 .009
Anm .053 .050 .003 .062 .061 .003 062 .062 .003
Bm .088 .066 .006 .080 .076 .005 .080 .076 .005
Ag .054 .054 .003 .063 .063 .004 | .063 .064 .004
By .084 .060 .004 | .073 .071 .003 .073 .070 .003
(2) Mean of standard error of equated scores
m/s A57 147 .020 153 155 .020 154 156 .020
m/m 103 .083 .005 101 .097 .006 101 .098 .006
m/gm 100 .080 .005 096 .095 .005 097 .095 .005

Note. SD = standard deviation of estimates of a parameter or a statistic; M of SE
= mean of estimated standard errors; SD of SE = standard deviation of estimated
standard errors.
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Table 3. Results for nonequivalent groups (Case B); number of
common items = 10, number of observations in each sample
= 2,000, number of sets of samples = 100.

Number of 5 10 15
quadrature SO M SD SO M SD SO M SD
points of SE of SE of SE of SE of SE of SE
(1) Equating coefficients
As .081 .084 .008 .087 .087 .008 .088 .088 .009
Bs 073 .054 .005 056 .059 .004 | .055 .059 .004
Anm .035 .035 .001 041 .042 .002 042 .043 .002
Bm .067 .046 .002 .050 .053 .002 .050 .053 .002
Ag .039 .038 .002 045 .044 .002 046 .045 .002
By 065 .041 .002 046 .049 .002 046 .049 .002
(2) Mean of standard error of equated scores
m/s 109 .099 .009 104 .106 .009 104 .106 .009
m/m 075 .058 .002 .065 .068 .002 .065 .069 .003
m/gm 076 .056 .002 .065 .066 .002 .065 .067 .002

Note. SD = standard deviation of estimates of a parameter or a statistic; M of SE
= mean of estimated standard errors; SD of SE = standard deviation of estimated
standard errors.
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Table 4. Results for nonequivalent groups (Case C); number of
common items = 15, number of observations in each sample
= 1,000, number of sets of samples = 100.

Number of 5 10 15
quadrature SO M SD SO M SD SO M SD
points of SE of SE of SE of SE of SE of SE
(1) Equating coefficients
As .051 .047 .005 .059 .056 .005 .060 .060 .006
Bs 094 .049 .005 072 .063 .004 | .074 .065 .004
Am 046 .040 .002 .056 .052 .003 .056 .055 .003
Bm 092 .044 .003 .069 .060 .002 071 .062 .002
Ag 045 .039 .002 .054 .050 .002 .054 .054 .003
By 092 .044 .003 069 .060 .002 071 .062 .002
(2) Mean of standard error of equated scores
m/s 107 .068 .006 .093 .084 .006 .095 .088 .006
m/m 103 .060 .003 .089 .079 .003 .091 .082 .003
m/gm 102 .059 .003 .088 .078 .003 .089 .082 .003

Note. SD = standard deviation of estimates of a parameter or a statistic; M of SE
= mean of estimated standard errors; SD of SE = standard deviation of estimated
standard errors.

Table 5. Correlations between estimated equating coefficients

(Case A); number of common items = 10, number of observations
in each sample = 1,000, number of sets of samples = 100,
number of quadrature points = 10.

As Bs Am Bm Ag By
As 1.00 68 (.03) .38(.03) -.32(.09) .58 (.03) -.20 (.08)
Bs 64 1.00 17(.03) .33(.12) .30(.04) .45(.10)
Anm 41 18 1.00 31(.04) .94 (.01) .32(.04)
Bm -.36 34 29 1.00 16 (.07) .98 (.003)
Ag 59 27 95 12 1.00 23 (.06)
Bg -.26 A4 30 98 18 1.00

Note. The lower half indicates the correlations of estimates of the coefficients.
The upper half indicates the means (standard deviations) of the estimated
asymptotic correlations for the estimates of the coefficients.
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Table 4 gives the results for Case C, where the number of
common items is 15.  Surprisingly, the differences between the three
methods which were observed in Tables 2 and 3 have almost
disappeared, though the m/s method is still the worst one. Note that
the tendency of the underestimates of B. is stronger than those in

Table 2 and 3 when the number of quadrature points is 5. Table 5
gives the observed correlations of the estimates of the coefficients, and
the means (standard deviations) of the estimated asymptotic
correlations over 100 sets of samples. The actual correlations are

close to mean theoretical values.  The pairs of (Ag and Am) and

(ég and ém) have high correlations within each pair, which

suggests the closeness of the m/m and m/gm methods.

Tables 6 and 7 show the results for single group (Case A’). The
population values for item parameters are the same as those for Cases
A and B. The number of observations is 1,000. Since the same

examinees respond to the items in Tests 1 and 2, @,; is set equal to
@, when random responses are generated. Thus, if the estimation
is exact, A~=1 and Bx=0 should be obtained. In Tables 6 and

7, we observe the similar tendencies which were shown in Tables 1
and 2. However, the standard errors for Case A’ are reduced from
those for Case A. This is theoretically expected from the signs of
partial derivatives (see Appendix) and the non-negligible positive

covariances between Ql and ¢, for the case of single group.
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Table 6. Means of estimated equating coefficients for

single group (Case A’); number of common items = 10,
number of observations in each sample = 1,000,

number of samples = 100, population values for A (B) = 1 (0).

Number of quadrature points

5 10 15
As 1.013 1.007 1.007
Bs -.011 -.004 -.003
Anm 1.010 1.000 1.000
Bm -.012 -.005 -.005
Ag 1.009 1.000 999
By -.012 -.006 -.005

Table 7. Results for single group (Case A’); number of common
items = 10, number of observations in each sample = 1,000,
number of samples = 100.

Number of 5 10 15
quadrature SO M SD SO M SD SO M SD
points of SE of SE of SE of SE of SE of SE
(1) Equating coefficients
As 092 .101 .015 | .091 .100 .014 | .091 .101 .014
Bs .061 .044 .004 | .037 .039 .003 | .037 .038 .003
Anm .036 .038 .002 | .038 .038 .002 | .038 .038 .002
Bm .066 .056 .006 | .049 .051 .006 | .049 .051 .006
Ag 040 .042 .002 | .042 .042 .003 | .042 .042 .003
By 062 .051 .005 | .044 .046 .005 | .044 .046 .005
(2) Mean of standard error of equated scores
m/s 110 .110 .014 | .098 .107 .014 | .098 .108 .014
m/m 075 .067 .006 | .062 .064 .005 | .062 .064 .005
m/gm 074 .066 .005 | .061 .063 .005 [ .061 .063 .005

Note. SD = standard deviation of estimates of a parameter or a statistic.; M of SE
= mean of estimated standard errors; SD of SE = standard deviation of estimated
standard errors.

17



Table 8. Results for Kolen and Brennan’s (1995) data;
number of common items = 12, number of items in each test
= 36, numbers of observations in each group = 1655 (Test X)
and 1638 (Test Y), number of quadrature points = 10.

Estimates SE Asymptotic correlations
As 1.009 .070 1.00
Bs -.375 .069 -.06 1.00
Am 961 .041 57 -30 1.00
Bm -.349 .078 .26 92 -28 1.00
Ag 970 .044 73 -20 .94 -10 1.00
Bg -.354 075 21 94 -29 995 -14 1.00

Mean standard error of equated scores
m/s: .099, m/m: .088, m/gm: .087
Note. SE = standard error of estimates.

Table 8 shows the results for a real data set. The data from
Kolen and Brennan (1995, Appendix B) are used: Tests X and Y
consisting of 36 items in each test have 12 internal common items and
were administered to 1,655 and 1,638 examinees, respectively. The
equating was performed by assuming that the groups are independent
nonequivalent ones. The transformation in the equating was from the
scale of Test X to that of Test Y in the two-parameter logistic model.
Ten quadrature points were used for the numerical integration of
abilities.  The estimated coefficients for the m/s method are
somewhat different from those for the m/m and m/gm methods. To

the contrary of the simulated results, the standard error for B is
smaller than those for By, and Bgy. However, the mean standard

error of equated scores for the m/s method is greater than those for the
m/m and m/gm methods as was the case for simulated data. The
estimated asymptotic correlations show a close relationship between
m/m and m/gm methods.

Conclusion
The simulated results in the previous section are based on
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restricted conditions. However, the results are rather clear and
indicates that when the number of common items are small such as 10,
the results of m/s method are inferior to those by the m/m and m/gm
methods. The differences between three methods seem to decrease
with the increase of the number of common items. Except for the
unusual case when only the estimates of difficulties are available, we
have no reason to employ the m/s method. The m/m method is
recommended from its simplicity among the three methods as long as
the evidence of the superiority of the m/gm method is not provided.
The marginal likelihood estimation of item parameters employs
numerical integration. The estimates of the equating coefficients are
directly influenced by the number of quadrature points in the
numerical integration. The number should be as large as 10.

Discussion
Up to now, the situation of internal common items has been
assumed. If external common items are used, the asymptotic
covariance matrix of (10) and (11) should be reformulated in the
following way. We assume the same number of common item as
before. That is , the p common items are supposed to constitute the
anchor test (Test 3). Tests 1 and 2 are composed of only unique

items whose numbers are (,— P and (,— P, respectively. The

difference between this situation and that of internal common items is
that the estimation of the item parameters are performed separately for
Tests 1, 2 and 3 in the case of external common items. The
parameters of the common items may be estimated jointly with those
for Test 1 or Test 2. For this case, the situation becomes essentially
equivalent to that with internal common items as long as the
asymptotic behavior of the estimates of equating coefficients are
concerned.

Let ¢, and ¢, be the vectors of the item parameters for

Group 1 (Tests 1 and 3) and Group 2 (Tests 2 and 3), respectively as
was the case for internal common items. The subvectors in ¢, and

o, are defined:
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a.=fy.") and a,=(B,.7,") where
lglz(an’bn’---’alp!blp)' and ézz(azubzu---vazwap)'

are the parameters for Test 3 (the anchor test), while

le (al,p+1’b1,p+1""la1q11b1q1)| and
ZZZ(az,p+1!b2,p+11"'1a2q21b2q2)' are the parameters for

Tests 1 and 2, respectively. Let Q=(Q1',QZ')' as before.

Then, the asymptotic variance-covariance matrix of ¢ for the case
of two nonequivalent groups becomes

A {aCOV(QAl) O }
acov(a) =

O  acov(q,) (30)
where
acov(a,)
_ ) . )
" | 1E '
(13" (HED"B28,,9,)
_ <(1(y )"
e neeN ' (31)
| 'E q )
e (%9”'9“') (7))
x(1(B )" _

(k =1,2)
with gﬂki and gyki being the subvectors in gki (see (20) with
(16) and (18)) for the parameters ,gk and ), respectively. In the

case of single group, the asymptotic cross covariance matrix for &,

with respect to QAl becomes
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acov(d, @) =
(B E(Y,.9,,)

<(1(5)",
(17 )"EXY,.9,.)

™~ pii

(1),

(1(B)'ECY,.H,)

x(1(7 )"

UCAR N

x(1(7 )"

(32)

T_he estimates of (31) and (32) are given by substituting the esti;nates
of the parameters for their true values, and the observed values for

E(). Since the partial derivatives of the equating coefficients with
respect to » and y are zero, only the upper-left submatrices in

(31) and (32) are used in actual computation for avar( A*) and

avér(é*). However, other submatrices become necessary when we

consider the asymptotic variances and covariances of equated item
parameters and their functions in Tests 1 and 2.

Appendix The Partial Derivatives of the Equating Coefficients
with respect to the Item Parameters
For the m/s method (see (6)), the nonzero partial derivatives are

oAs Aslby—@ PXb.)

b S - W Db
é)AS _ — As (b2j o (1/ p)kZilek)

P S~ P(Eba)

k=1

;P Dby

OBs 1 OAs X2b2k

P
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ba ay
— X k=1 _ : =1’."’ .
2o, b p  p' U P)

For the m/m method (see (7)), the nonzero partial derivatives are

é’Am__ kZZ;aZk aAm 1

_1 =AM i1 )
b,; P b, P U P ~

For the m/gm method (see (8)), the nonzero partial derivatives are

OAg __Ag JAg_ Ag IBg _ 5Agxéb”

fa, Pa, Ja, DPa, Ja, Fa, P

OBy __OAg P Bg 1

5a21 _5612] p | ablj p

%:_ﬂ (j=1 ) A3
on,, p, =50 A9
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