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Proof of Theorem 1
Since

C,, =(n—py)tr(UyU) —ng +2pq
:(n_pgﬁdL@+U;[%p)_nq+2pq

_ _ Pa— P
E(ZUJU X |A=0)= I
and E(Zg UgU, 02" | PE——C (A1)
(see e.g. Siotani, Hayakawa & Fujikoshi, 1985, Equation (2.4.11)), we have

E(Cpq|A=0)=(n—pg)(1+ Po— P jq—nq+2pq
n_pQ_q_l

(n—pa)(Po — P)4 :p(ﬁq(wl)(pg —P)
n—pg—q-1 n—pg—q-1

When A=0, E(GD, )= pq, which gives from the above result

=—paq +2pq+

E(C, )~ E(GD,)=E(C,)- q(q+1)(p, — p) —pg =0
n—p,—q-1 '

Proof of Theorem 2
The expectations in (3.4) are given by (2.2), (2.4), (2.5) and (2.6)

for A = O . For the variances of (3.4), noting that under normality U;; and
U plo are independent, the following result will be used when X, is

independent of Y,- (i,7=1,2).



cov(X, Y, X,Y,) = E(X,%,X,Y,) ~ E(X,,)E(X,Y,)
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+teov(X, X,)E(Y))E(Y,).
When A =0 since U;\Q = ZBI/ZUMQZS " is Wishart-distributed with the

(A.2)

covariance matrix I(n) and Po — P degrees of freedom, which is denoted
by W(,),Po —P), we have
COV{(U*p|Q)ij’ (U;\Q)Id} =(Pq _p)(Siijl + 5i15jk) (G, ]k, 1 =1,...,q),
where ()y indicates the (7, j)th element of a matrix and Oy is the Kronecker
delta. On the other hand, U,' = ZE/ZUSZB/Z is inverse-Wishart distributed as
W (I(n) 1= Pg) and

cov{(Ug "), (Ug )y} =

i, Jj,k,1l=1,..,q)
(see e.g. Siotani et al., 1985, Equation (2.4.12)).
From (A.2),

var{tr(Ug'U, o)} = var{tr(Ug U, )}
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q

=(pPq — p)2 Var{Z(U*Ql)ii } +(n—py—q-— 1)_2 Var{_Zq:(U*pQ)ii}

i=l1

q

+ 2 covi(Ug )y (Ug g teovi(U, o)y (U o)}

i’j’ ’lzl
where

COV{(UQI),',':(UQI)]]} = - -

(n—po—q)n—po,—q-1’(n—py—q-3)
COV{(U*p|Q)ii’(U*p|Q)jj} =2(pq —p)5l.j (i, j=L....9).
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Consequently,

var {tr(U, U o))

q 2+2(n—p, —q-1)0,
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q
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i,j=1
4 56, +(n—po—qg—1)8.8. +5.5
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(Po—P)4q+2(n—p, —q-1)(q" +q)}
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(A.4)
which gives the variances in (3.4). Equation (A.4) 1s partially justified in that
when g =1, (A.4) with (3.3) gives the well-known variance

2(n— *(h—p-=2
Var(F): (n pQ) (n 2p )
—p)n—po=2) (n—py—4)
of the central /" distribution with P =P and 7 — P, degrees of freedom.

(A.5)

Proof of Corollary 2
From (3.2) when g =1,

C, =(n—pg)(1+p9 _pF*j—n+2p=(pQ—p)F*+2p—pQ,

n—Pqg
_ 2p.. — 2Wp. —
Cp:Cp_ (pQ p)_(pQ p)F _|_2p pQ (pQ p),
n—pg—2 n—pg—2
n— Py —2
MCpq =(po —p)f—QF +2p—pq (A.6)
n—pq




which yield the results of Corollary 2.

Proof of Corollary 3
The properties of the noncentral F' distribution are well documented (e.g.,
Johnson, Kotz & Balakrishnan, 1994, Chapter 30). The expectation when

n> p,+2 andvariance when 7> p, +4 for the noncentral F distribution
denoted by F in Corollary 2 are

E(F") = (po —P+A)n —pg)’
(po —P)n—py—2)

2 2
" _ - — — Do — A7
var(F ):2(” pﬂ] (Po =P+ 2A) +(Pg : p+2A)n=py=2) (A7)
Po—P (n—po—2)"(n—po—4)
respectively. Then, when A =0(n),
E(C,)=(po — P)E(F')+2p-p,

n—po—2
_ . 9) —
EC,)=(po - PIE(F) +2p - py - 20
Q
_ — ) _
_(pa—p+A)n pg)+2p_pg_ (Pg p):“()(l),
n—pg—2 n—po—2

n - - 2 *
E(MC,,) = (p =)= 22— E() +2p=p,
Q
=(po—P+M)+Q2p—py)=p+A=1+0(),
which give (3.7).
Using (A.7),

2% +22n)

var(F') = Vo +0(1) =0(n) (A.8)

Po

follows. Equation (A.8) gives (3.8). From the unbiased property of MC  and

the definitions of C p» and C » , we have the results of (3.9) except its last
inequality MSE(C ,) <MSE(C ) | which is given by



n—pg—2
_4(po—p+A)
(n—po—2)°

1
2(p—2-p3)-2(po— D)}’
(n_pg_z)z{ (P=24=Pa)=2(po—P))}
_ 4
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(recall the assumption P > P in Section 1) and var(C p) = var ((_: p) :

(BC,)~(p+ 1)} :{(pg—pﬂl)(n—pg)w_l_pg}

{E(C,)~(p+A)}" =

s <{E(C,)-(p+A)}’

Proof of Lemma 1

Since MSE(d0) =(d ~1)°6; +d’c;,, MSE(d0) is minimized
when d=d_. = 002 /(002 + Gezn) =1/{1+ C\Z/ (é)} . The minimized MSE is
o; o, MSE(H)

0? — = = :
"0 +o,, 1+30) 1+3(0)

Proof of Corollary 4
First, we obtain

MSE(MC,, )-MSE(d_, . C,.)

_ ["‘Pg_q_lj _ _1 ~ Var((_qu)
n-p, 1+var(C, )(pq) (A.9)

_(n=po—q =1’ {(pq)’ +var(C,,)} —(n - po)*(pq)’

(n=pqo) {(pq)” +var(C,,)}
which can be positive or negative, as shown in the following examples. When ¢
= 1, the numerator of the first factor on the right-hand side of the last equation
of (A.9) is

var(C )



(n=po=2)"{p* +var(C,)} = (n - p,)’ p’

2(po —p)n—po)(n—p-2)
n—p,—4 (A.10)

=—4(n-p,)p° +4p” +

——|om)|+ |0 |+|0n?)],

where for Var(ap) ,(3.2) and (A.5) are used.
When n is sufficiently large, (A.10) is positive, demonstrating that in this

case, MSE(MC pq) > MSE(dmincpq(_j pq) . However, when # is relatively small,
we define n—p, =a>4 (see a condition for (A.3))and po—p=b>0
(recall the assumption Pgq > P in Section 1). Then, (A.10) becomes

—4ap® +4p* +2ba’(a+b—-2)/(a—4), which is negative when
p’>ba’(a+b-2)/{2(a-1)(a—4)} . For instance, whena=5and b =1,

the last inequality holds when P 2 4. From this result, we have the central
inequality min{-} <max{-} in (4.2). The remaining inequalities are given by

the unbiased property of MC »q and the definitions of C pg and C g -

Proof of Theorem 4
From (A.6) and (A.7), we have

var(MC, ) = (po - p)’ [wj var(F")
— Po

:2(pQ_p+}‘)2+(pQ_p+2)‘)(n_pQ_2). (A.11)
n—p,—4
Substituting (A.11) for the first equation of (4.3) given by Lemma 1, the second
equation of (4.3) follows.

Results associated with Theorem 4 when A =0(1) and A =0
When A=0(1), from (A.11) we have

var(MC, ) =2(p, — p+22)+0(n™"),

2
By = s ) v (1)
" (p+A) +2pg —p+24)
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Note that when A =0, (3.2) and (A.7) yield
var(C ) = var(C ,)=(Pg— p) var(F

Q~P-N=Po )

 (1=pa=27(n—po—4)  \n—p,-2
> var(MC,, ) = 2L I
var(C ) = Var((_jp) =2(po—P)+ O(n™),
Var(MCpq) =2(po—p)+ O(n_l),

_2(pg—p)(n—pg)2(n—p—2):[ n—pg jzvar(MC ) (A.13)

9

P P’ _ p(n—p,—4)
"M pt 4 var(MC, ) pP(n—po —4)+2(p, — p)(n—p—2)
2
S 4 +O(n™)
P +2(py—p)

(see (4.1)). From (A.12) and (A.13), when A =0(l), it is seen that (A.12) is
given from the last two sets of results of (A.13) by replacing Po —P and p2

with Po —P+24 and (p+ )«)2 , respectively. However, as described
earlier, generally A =0(n), giving (A.8).
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