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Abstract

This paper investigates a long-run equilibrium of the Tullock contest using an

evolutionary game-theoretic approach. The �nite population evolutionarily stable

strategy (ESS) yields overdissipation of the rent when there are increasing returns

to expenditure. However, imitative behavior, which should be a source of the evo-

lutionary dynamics behind the ESS, is implausible because individual rationality

is not always satis�ed. In this paper, we attempt to specify such implicit imitative

behavior and construct explicit evolutionary dynamics. Under our plausible imita-

tion rule, we will show that full dissipation may prevail in the long run as long as

there are increasing returns.
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1 Introduction

The seminal work of Tullock (1980) has inspired numerous studies on rent-seeking con-

tests. However, at the same time a problem emerged: The Nash equilibria may not exist

in the rent-seeking game when there are excessive increasing returns to rent-seeking ex-

penditure. In the static Tullock contest, the degree of marginal returns to rent-seeking

expenditure is one of the most important factors for determining the rate of rent dissi-

pation, the main area of interest in the rent-seeking theory. Tullock (1980) showed that

the rate of rent dissipation is less than or equal to 1 when �nite rent-seekers engage in

rent-seeking activities provided that a parameter r, which determines the degree of mar-

ginal returns, is smaller than or equal to a threshold value. In the case that r is greater

than the threshold value, however, the static Tullock rent-seeking game cannot establish

a pure strategy Nash equilibrium. Therefore, we cannot con�rm whether overdissipation

of the rent occurs in the Tullock model.

If the rent-seeking game has �nite players and a �nite strategy space, we can verify

that a mixed-strategy Nash equilibrium exists by a mixed extension of the strategy space.

Baye, Kovenock, and de Vries (1994) con�rmed that in the symmetric mixed-strategy

Nash equilibrium of a �nite rent-seeking game, overdissipation of the rent does not occur.

Moreover, they showed that even in a rent-seeking game with a continuous strategy

space, there exists a symmetric mixed-strategy Nash equilibrium that does not yield

overdissipation of the rent.

Recently, Hehenkamp, Leininger, and Possajennikov (2004) adopted the concept of

a �nite population evolutionarily stable strategy (ESS), presented by Scha¤er (1988),

preserving the basic framework of the original Tullock contest. They show that there

exists a �nite population ESS, and the ESS entails overdissipation of the rent when

r is excessively high. However, the solution using the concept of an ESS involves a

drawback because it is not possible to identify dynamic forces in order to have players

adopt evolutionarily stable behaviors. Since evolutionary forces are produced through

interactions among boundedly rational rent-seekers, by revealing the source of the forces,

we can determine how the rationality of the rent-seekers should be bounded. Therefore,

we cannot conclude that overdissipation will be present in real life contests if the ESS is

supported by implausibly irrational behavior.

Hehenkamp et al. (2004) state that imitative behavior among rent-seekers is ob-

viously the source of the evolutionary force behind the �nite population ESS. In this
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paper, therefore, we attempt to specify such implicit imitative behavior and construct

explicit evolutionary dynamics. We implement discrete-time dynamics and assume that

boundedly rational rent-seekers imitate one of the currently most successful strategies in

the next period. The purpose of this paper is to investigate long-run equilibrium as a

consequence of equilibrium selection in evolutionary dynamics and to consider whether

the equilibrium strategies are reasonable from the standpoint of reality.

For this purpose, we adopt the evolutionary equilibrium concept of stochastic stability

instead of evolutionary stability. We demonstrate that in our imitative learning dynamics,

there exists a unique stochastically stable state (SSS) and that the long-run equilibrium

strategy pro�le constituting the unique SSS coincides with the pro�le of ESSs, as long

as an ESS exists. Hence, overdissipation of the rent arises in the long-run equilibrium of

the SSS.

We con�rm that the only factor to cause overdissipation in the SSS is the excessively

irrational behavior of the rent-seekers as they imitate the most successful strategy even

though it yields a negative payo¤. We consider a modi�ed imitation rule in which such

an implausibly irrational behavior is excluded and demonstrate that the rent is almost

always fully dissipated in the long run when there are increasing returns to rent-seeking

expenditure.

The remainder of this paper is organized as follows. Section 2 reviews the static

Tullock contest. In Section 3, we derive a stochastically stable state in imitative learning

dynamics and compare the results with the �nite population ESS. Section 4 de�nes a

modi�ed imitation rule and determines a stochastically stable state under the rule; Section

5 discusses the results under the rule and concludes the paper.

2 The static Tullock contest

Consider a contest in which N (� 2) rent-seekers compete for a prize (or a rent) of size
V . If player i 2 J = f1; 2; : : : ; Ng makes an expenditure of xi in order to capture the
prize, his share of the prize is assumed to be

si (xijx�i) �
xriP
j2J x

r
j

, (1)
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where r can be interpreted as a parameter that summarizes the behavior of the marginal

cost of in�uencing the share of the prize in terms of rent-seeking expenditure, and x�i
denotes a strategy pro�le with respect to all rent-seekers except for i. In Tullock�s (1980)

original model, the formulation in (1) is interpreted as the probability of winning the

contest in which a winner obtains the entire prize. Unlike this, to avoid any unnecessary

complexity in the Markov process that we will explore in subsequent sections, we assume

that the rent-seeking contest is deterministic. Player i attempts to maximize his payo¤:

�i (xijx�i) � si (xijx�i)V � xi: (2)

When r � N= (N � 1), in a symmetric Nash equilibrium, each of these N players

makes an expenditure of

xSNE =
N � 1
N2

rV . (3)

Therefore, the total rent-seeking expenditure in the symmetric Nash equilibrium amounts

to

XSNE � NxSNE = N � 1
N

rV , (4)

for r � N= (N � 1). However, when r > N= (N � 1) and �nite, xSNE in (3) is no longer
a Nash equilibrium expenditure. It is easily veri�able that the payo¤ to each player in

(2), after the substitution of (3), will be negative. Since the strategy xSNE is dominated

by a zero bid, the symmetric solution to the N players��rst-order conditions does not

yield a global maximum if r > N= (N � 1). Thus, the rate of rent dissipation XSNE=V

cannot be greater than one. That is, overdissipation never occurs in the symmetric Nash

equilibrium of the static Tullock contest.

3 The dynamic Tullock contest

Hehenkamp et al. (2004) showed that a �nite population ESS exists in the Tullock contest

and the total amount of ESS expenditures results in overdissipation of the rent if 1 < r

� N= (N � 1). Evolutionary stability, however, does not specify a dynamic selection
process that forces the attainment of a state consisting of all the ESSs, as mentioned

in Section 1. Hehenkamp et al. (2004) state that the imitative behavior among rent-

seekers is obviously one source of the dynamics behind ESS. In this section, we explicitly

model a situation wherein imitative behavior among rent-seekers prevails in evolutionary
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dynamics.

3.1 Imitative learning dynamics

For technical reasons, we assume that the strategy space is a �nite grid, i.e., � =

f0;�; 2�; :::; z�g where � 2 R++ and z 2 N; � can be arbitrarily small. The only re-

striction imposed on � is that rV=N 2 �. Rent-seekers can only observe the rent-seeking
expenditures x = (x1; x2; : : : ; xN) and the payo¤s from the contest� = (�1;�2; : : : ;�N).

Dynamics proceed in discrete time, indexed by t = 0; 1; 2; : : :. The rent-seeking ex-

penditure of player i at t is denoted by xi (t). For brevity, we occasionally denote the

payo¤ at period t �i (xi (t) jx�i (t)) by �i (t) : At each t, there are two stages. In the �rst
stage, it is determined whether or not player i revises his expenditure xi (t� 1) with a
common and independent probability � > 0. If player i decides to revise it, the decision

process proceeds to the second stage in which player i chooses from the set

IM (t� 1) =
n
xj (t� 1) 2 � j �j (t� 1) = max

�
�l (t� 1)

	
l2J

o
; (5)

according to an independent probability distribution with full support. We can notice

that through the imitation rule de�ned in (5), the N -dimensional vector of expenditures

at t, denoted by x (t), is determined by an N -dimensional vector of expenditures at t� 1
x (t� 1). In other words, we have a discrete-time Markov process with �nite state space
�N .1 Let a monomorphic state in which all rent-seekers choose the identical expenditure

x be denoted by mon(x) = (x; x; : : : ; x). Thus, we obtain the following results:

Lemma 1 Any monomorphic state mon(x) is in a limit set of the imitative dynamics,
and any limit set is in fmon(x)gx2�.

Proof. From the imitation rule, it is obvious that for any x 2 �, the state mon(x) leads
to a limit set of the imitative dynamics. Suppose that, contrary to our latter claim, a

state in a limit set is a nonmonomorphic state. Since each rent-seeker chooses any x

2 IM (t� 1) with a positive probability, there is always a positive probability that the
1Our setting is in accordance with the Vega-Redondo(1997) model of learning dynamics of Cournot

oligopolistic competition with a discrete-time Markov process. Recently, Alós-Ferrer, Ania and Schenk-
Hoppé (2000) investigated Bertrand competition in imitative dynamics by adopting the model of Vega-
Redondo (1997).
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process will transit from the nonmonomorphic state to a di¤erent state. This contradicts

our assumption that the nonmonomorphic state is in a limit set.

Therefore, there are z + 1 singleton limit sets because the number of monomorphic

states is equal to the number of available expenditures in the �nite strategy space �.

3.2 The perturbed Markov process

We now introduce an experimentation that will occur with some independent probability

� > 0. Once the experimentation occurs, xi (t) 2 � is chosen according to some given
probability distribution with full support on �. Thus, for each � > 0, the perturbed

Markov process has an irreducible transition matrix such that there is a unique invariant

distribution �� that is independent of initial conditions and assigns positive probability

to all states in �n. The invariant distribution ��, however, depends on the occurrence of

experimentation �; moreover, the invariant distribution will concentrate almost all of its

probability on a few states as � ! 0 (see, Foster and Young [1990], Kandori, Mailath,

and Rob [1993], and Young [1993]). That is, we can investigate the relative robustness

among the monomorphic states as the occurrence of the experimentation vanishes. Hence,

we focus on the limit invariant distribution of the perturbed Markov process as � ! 0,

denoted by �� � lim�!0 ��. If a state is assigned some positive probability according

to the limit invariant distribution ��, then the state is considered to be stochastically

stable: A stochastically stable set consists of all the states with positive probabilities.

Stochastically stable states are, intuitively, the states that are most likely to be observed

over the long run when the occurrence of experimentation is rare.

According to recent evolutionary literature, we use the techniques provided by Freidlin

and Wentzell (1984) to �nd a stochastically stable state. Any ordered pair of states is

referred to as an �arrow,� which is denoted by (x0;x00) for x0;x00 2 �N . For each x

2 �N , an x-tree is a collection of the arrows such that every x0 2 �N n fxg is the �rst
element of the arrow, and for every x0 2 �N n fxg there is a path f(x0;x1) ; (x1;x2) ;
: : : ; (xs�1;xs)g where x0 = x0 and xs = x. The cost of the arrow (x0;x00) is the minimal
number of experimentations required for the transition from x0 to x00 to occur with a

positive probability. The cost of a x-tree is the sum of the costs of all the arrows that

belong to the x-tree. The least cost among all x-trees is the stochastic potential of x.

Young (1993) veri�es that the limit invariant distribution �� assigns positive probability

only to the states having a minimum stochastic potential. In other words, any state with
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a minimal cost tree among all trees of all limit states in an unperturbed Markov process

is stochastically stable and a stochastically stable set consists of all the limit states with

minimal cost trees.

Suppose that m (� N � 1) rent-seekers choose x while N �m rent-seekers choose x̂.

De�ning x̂�i (m) � (x; : : : x| {z }
m

; x̂; : : : ; x̂| {z }
N�1�m

) and x̂�i (m� 1) � (x; : : : x| {z }
m�1

; x̂; : : : ; x̂| {z }
N�m

), the payo¤ for

a player choosing x is

�i (xjx̂�i (m� 1)) =
xr

mxr + (N �m) x̂rV � x. (6)

The payo¤ for a player choosing x̂ is

�i (x̂jx̂�i (m)) =
x̂r

mxr + (N �m) x̂rV � x̂. (7)

Subtracting (7) from (6), we have the following relative payo¤:

� (x; x̂;m) =
xr � x̂r

mxr + (N �m) x̂rV � x+ x̂. (8)

The relative payo¤ is useful in computing the cost of an arrow. If � (x; x̂;N � 1) � 0,

then the minimal number of experimentations required for the transition from mon (x)

to mon (x̂) to occur with a positive probability, i.e., the cost of the arrow, is just one.

Therefore, if x̂ is a global maximizer of � (x; x̂;N � 1), then � (x; x̂;N � 1) � 0 for any
x 6= x̂. Thus, the stochastic potential of mon (x̂) is z since for every x 6= x̂ the cost of
the arrow from mon (x) to mon (x̂) is one. Thus, mon (x̂) has the minimum stochastic

potential since z is the number of monomorphic states except for mon (x̂).

Lemma 2 If r � N= (N �m) for givenm 2 [1; N � 1], then x = rv is a global maximizer
of � (x; rv;m) where v � V=N .

Proof. Suppose, for the moment, that player i chooses xi 2 C where C is a continuum
of expenditures on the interval [0;1) in R+. The �rst-order condition for maximizing
� (x; x̂;m) in (8) with respect to x is

@

@x
� (x; x̂;m) =

Nxr�1x̂r

[mxr + (N �m) x̂r]2
rV � 1 = 0. (9)
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When x = x̂ = rv,
@

@x
� (rv; rv;m) =

1

Nrv
rV � 1 = 0, (10)

thus, we obtain x = rv. The second-order derivative of � (x; rv;m) with respect to x is

@2

@x2
� (x; rv;m) =

(r � 1) (N �m) (rv)r � (r + 1)mxr

[mxr + (N �m) (rv)r]3
xr�2 (rv)rNrV . (11)

Therefore, the su¢ cient condition for rv locally maximizing � (x; rv;m) is

� � (r � 1) (N �m)
(r + 1)m

< 1: (12)

It is evident from (11) that the function � (x; rv;m) is strictly concave (respectively,

convex) if x > (respectively, <) �
1
r rv. For r � 1, � (x; rv;m) is concave at x = 0 and

strictly concave at any x > 0 since � � 0. Hence, x = rv is a global maximizer of

� (x; rv;m) for any r � 1.
Next, consider the case in which r > 1. When r > 1, � is positive such that � (x; rv;m)

is strictly convex for any x < �
1
r rv and strictly concave for any x > �

1
r rv. Thus, �

1
r rv

is the only in�ection point of � (x; rv;m). This implies that either 0 or rv can globally

maximize � (x; rv;m) if the inequality of (12) is satis�ed, i.e., � < 1. When m � N=2,
(12) holds regardless of r. Rearranging (12) yields r < N= (N � 2m) if m < N=2. That

is, (12) can be satis�ed for r < N= (N � 2m) when m < N=2. Substituting 0 and rv for

x and x̂ in (8), respectively, we obtain

� (0; rv;m) =
r (N �m)�N
N (N �m) V . (13)

For any r � N= (N �m), we have � (0; rv;m) � 0. Since � < 1 for any r < N= (N � 2m)
and � (rv; rv;m) = 0, rv is a global maximizer of � (x; rv;m) for any r � N= (N �m).
Figure 1 depicts a con�guration of the graph of � (x; rv;m) in the case that 1 < r

< N= (N �m). From the assumption that rv is contained in the �nite grid �, rv can

also be a global maximizer of � (x; rv;m) when a strategy space is �.

Lemma 2 states that a player choosing rv acquires the highest payo¤when the number

of other players choosing x 6= rv, denoted by m, is such that r � N= (N �m).

Proposition 1 For r � N , there exists a unique stochastically stable state in the imita-
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Figure 1: Con�guration of the graph of the function � (x; rv;m)

tive learning dynamics of the Tullock contest, which is given by mon (rv).

Proof. Lemma 1 states that no nonmonomorphic state can be included in the sto-

chastically stable set. When m = N � 1, from Lemma 2, rv is a global maximizer of

� (x; rv;N � 1) if r � N . Thus, we have

� (x; rv;N � 1) � 0 for any x 2 �n frvg . (14)

The cost of mon (rv)-tree is z since the inequality (14) implies that for every x 2 �n frvg,
the cost of the arrow from mon (x) to mon (rv) is just one. Therefore, the stochastic

potential of mon (rv) is equal to z. Clearly, z is the minimum stochastic potential.

Hence, mon (rv) is contained in the stochastically stable set.

For uniqueness, we must verify that no tree rooted in mon (x) except for mon (rv) has

the minimum stochastic potential z. Consider �rst mon (x) for any x � V . In this case,
the cost of the arrow from mon (0) to mon (x) is more than one since � (0; x;N � 1) � 0.
Hence, mon (x) for any x � V cannot be a stochastically stable state. Next, consider

mon (x) for any x 2 (0; V ) n frvg. We can easily observe that � (0; x0;N � 1) < 0 and
@
@x
� (0; x0;N � 1) = �1, where x0 2 (0; V ). In addition, � (x; x0;N � 1) is strictly convex
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for x < �
1
rx0 and strictly concave for x > �

1
rx0 if r � N . Further, � (x0; x0;N � 1) = 0

and we obtain the following from (10):

@

@x
� (x0; x0;N � 1) = 1

Nx0
rV � 1 T 0 if x0 S rv. (15)

Accordingly, we obtain � (x0 +�; x0;N � 1) > 0 for any x0 < rv and � (x0 ��; x0;N � 1)
> 0 for any x0 > rv by regarding � as a su¢ ciently small value. That is, the costs of the

arrows from mon (x0 +�) to mon (x0) for any x0 < rv and from mon (x0 ��) to mon (x0)
for any x0 > rv are both more than one. Thus, for any positive x0 6= rv, the stochastic
potential of a tree rooted in mon (x0) is more than z.

Finally, the tree rooted in mon (0) cannot have the minimum stochastic potential

since there exists a positive x such that � (x; 0;N � 1) � 0.

For any positive r � N , the only stochastically stable state mon (rv) leads to the

aggregate rent-seeking expenditure of Nrv = rV . Thus, the rate of rent-dissipation in

the stochastically stable state is equal to r. Therefore, when r is greater than one but not

greater than N , overdissipation occurs frequently in the long run where the stochastically

stable state can be overwhelmingly attained.

Hehenkamp et al. (2004) show that there exists a unique ESS for any positive r

� N= (N � 1). The ESS derived is identical to the individual strategy rv constituting
the stochastically stable state derived above. The set of r ensuring the existence of the

ESS is, however, included in the set of r for our stochastically stable state, except for

the case in which N = 2. In other words, when N= (N � 1) < r � N , rv is the strategy
constituting the SSS but not an ESS. This di¤erence increases in contrast as the number

of rent-seekers increases. That is, the larger the N , the larger is the supremum of the set

of r for the SSS and the smaller is the supremum for the ESS. Moreover, as N !1, the
supremum for the ESS converges to 1; thus, the possibility of overdissipation in the ESS

vanishes. However, in our imitative dynamics, the in�nitely large number of rent-seekers

may result in a higher rate of overdissipation since it allows the existence of the SSS rv

for any large r.

The ESS in Hehenkamp et al. (2004), however, is a �nite population ESS that is

de�ned in Scha¤er (1988), and therefore, N is assumed to be �nite such that there is a

range of r that induces overdissipation. It is necessary to satisfy the following condition
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in order that rv is a �nite population ESS in the Tullock contest.

� (x; rv; 1) < 0 for any x 6= rv. (16)

That is, if a single rent-seeker chooses any strategy x 6= rv but other N � 1 rent-seekers
choose rv, then the payo¤ for the rent-seeker choosing x 6= rv must be lower than the

payo¤s for the other rent-seekers. Since the only candidates for a global maximum of

� (x; rv; 1) are 0 and rv, the ESS requires that a single rent-seeker choosing a zero bid

obtains a strictly lower payo¤ than the other N � 1 rent-seekers who choose rv. In
other words, each of N � 1 rent-seekers choosing rv must obtain a positive payo¤, i.e.,
Nv= (N � 1) � rv > 0, which yields r < N= (N � 1). In order that rv constitutes a
stochastically stable state given zero bids for N � 1 rent-seekers, a single rent-seeker
choosing rv only has to obtain a nonnegative payo¤, while the other N � 1 rent-seekers
retain zero payo¤s, as denoted in (13). Therefore, it should be required that Nv� rv � 0
or equivalently r � N .
Alós-Ferrer and Ania (2005) reveal that in a rent-seeking contest, a pro�le consisting

of N identical ESSs, which are globally stable, coincides with the unique SSS of the

imitative dynamics with experimentation if the globally stable ESS exists. However, they

do not investigate whether or not the converse holds. Global stability of an ESS requires

that a player choosing the ESS has a higher payo¤ than each of m players choosing any

other strategy for every m 2 [1; N � 1]. We can easily see from Lemma 2 that for any m

2 [1; N � 1] and x 6= rv, � (x; rv;m) < 0 if r < N= (N � 1), which implies that rv is a
globally stable ESS for any r < N= (N � 1). That is, the necessary condition for rv to
be a globally stable ESS is r < N= (N � 1). However, r < N= (N � 1) is not necessary
but su¢ cient for mon (rv) to be a unique SSS. The result we derived provides one of the

examples in which the strategy constituting a unique SSS is not a globally stable ESS

since for any r 2 (N= (N � 1) ; N ], mon (rv) is the unique SSS but rv is not an ESS.

4 The modi�ed imitative learning rule

In the imitation rule described in Section 3.1, even though the absolute payo¤ for the most

successful rent-seeker is negative, the other rent-seekers will imitate the choice of the most

successful rent-seeker with a positive probability in the next period. This imitation rule,

however, does not seem to be plausible. Even rent-seekers without full information and
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computation ability would know a priori that their absolute payo¤ can be zero regardless

of the other players�strategies if they choose zero expenditure. Therefore, the rent-seekers

may infer that the most successful strategy should not be one of observable positive

expenditures but zero expenditure. Taking this into account, it is worth investigating the

following modi�ed imitation rule: Player i chooses from the set

MIM (t� 1) =
n
xj (t� 1) 2 � j �j (t� 1) = max

�
�l (t� 1)

	
l2J & �j (t� 1) � 0

o
;

(17)

according to an independent probability distribution with full support if MIM (t� 1)
6= ?; otherwise, xi (t) = 0. In other words, the rent-seekers will decide to revise and

imitate an expenditure among observations only when they �nd one that results in a

positive payo¤. If not, they would abstain from rent-seeking activities. We can refer to

�j (t� 1) � 0 appearing in (17) as �individual rationality�or �participation�constraint
because the reservation payo¤ for each rent-seeker is equal to zero.2 Additionally, we

assume that v is included in the �nite grid �.

Proposition 2 Under the modi�ed imitation rule, a stochastically stable set in the imi-
tative learning dynamics of the Tullock contest is given by:

(i) fmon (rv)g for any positive r � 1
(ii) fmon (0) ;mon (v)g for any �nite r > 1.

Proof. See Appendix.

A monomorphic state mon (x) for any x > v is excluded from the limit sets of the

unperturbed Markov process owing to the modi�ed imitation rule since any strategy x

> v con�icts with individual rationality for each rent-seeker. A violation of individual

rationality entails overdissipation in the contest. Therefore, under the modi�ed imitation

rule, which is compatible with individual rationality, overdissipation cannot prevail in the

long run. In the stochastically stable state mon (v) for r � 1, each rent-seeker expends v
to win a share of the rent. Consequently, the sum of the expenditures in the per-period

contest amounts to V ; thus, the rent V is fully dissipated for any �nite r � 1 in the

stochastically stable state. In the other stochastically stable state mon (0), however, the

rent is not dissipated at all since all rent-seekers are inactive.

2We employ the term of individual rationality in the meaning that potential players participate in a
game only when their payo¤s from the game will be more than or equal to their reservation payo¤.
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Remark 1 Notice that mon (v) is not stochastically unstable even though a transition
from mon (v) to some state occurs with only one experimentation. Consider, for instance,

the case in which a player chooses v + � by way of experimentation in the state of

mon (v). In this case, we have � (v +�; v; 1) > 0 by taking � as a su¢ ciently small

value. This implies that the transition from mon (v) to mon (v +�) can be realized with

one experimentation. However, mon (v +�) is transient and thus can move to mon (0)

without experimentation owing to the modi�ed imitation rule. That is, the transition

from mon (v) to mon (0) can occur with one experimentation. Further, the transition

from mon (0) to mon (v) can occur with one experimentation. In short, we must not

judge a state as being unstable because the state can move to each of some other states

with one experimentation. In this respect, stochastic stability is di¤erent from the concept

of a �nite population ESS.

Remark 2 Since the concept of a �nite population ESS does not express a dynamic
process, our criticism regarding individual rationality could not directly apply to the result

in the �nite population ESS of the Tullock contest. Nevertheless, we might infer that the

ESS could be obtained as a consequence of the simple imitation rule such as (5) because

the ESS coincides with the strategy constituting the SSS with the simple imitation rule for

any r < N= (N � 1). Therefore, we can state that the concept of the �nite population ESS
ignores individual rationality in the Tullock contest. Hehenkamp et al. (2004) demon-

strate that the �nite population ESS coincides with a symmetric Nash equilibrium strategy

when each player maximizes his relative payo¤ assuming strategies of all the other players

as given. Because the relative payo¤ becomes zero at the ESS, we may interpret that indi-

vidual rationality is satis�ed with respect to the relative payo¤ and therefore not violated

in the evolutionary equilibrium. However, the objective of maximizing a relative payo¤

is a consequence of an economic natural selection in which the dynamic forces would be

driven by the simple imitation rule. Our concern regarding individual rationality is not

in the consequence but in the source of the economic natural selection. If the objective of

relative payo¤ maximization is a consequence of imitative learning dynamics con�icting

with individual rationality, we suspect that the consequence may not be valid because the

premises of the model are implausible.
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4.1 State-dependent experimentations

In the modi�ed imitation rule, for any �nite r > 1 we have two stochastically stable states:

mon (0) and mon (v). The states that will be superior over the other in the long run can

be determined if the experimentation process can be modi�ed in a more economically

justi�able manner such that experimentation rates are state-dependent.3

When experimentation rates are state-dependent, the cost of transition from x0 to x00

need not be the minimal number of experimentations required for the transition. Let

P � (x0;x00) denote the transition probability from x0 to x00 in a perturbed Markov process.

The cost of the transition from x0 to x00 is, more formally, represented as c (x0;x00) � 0 such
that 0 < lim�!0 P

� (x0;x00) =�c(x
0;x00) < 1. If the number of experimentations necessary

for the transition from x0 to x00 is at least k 2 N [ f0g and the experimentation rate in
the state x0 is �� where � is a positive parameter, then P � (x0;x00) is on the same order

of �k�. Thus, we obtain c (x0;x00) = k�. We can easily observe that the cost of the

transition from x0 to x00 equals to the minimal number of experimentations required for

the transition only when � = 1.

We assume that the experimentation rate in mon (0) is �� while each rate in all

the other states is still �. In other words, the probability that each rent-seeker will

experiment in the state where all rent-seekers are inactive can be di¤erent from that in

any monomorphic state where all of them engage in rent-seeking activities.

Proposition 3 Assume that the experimentation rate in mon (0) is �� while the one in
mon (x) for any x 2 (0; v] is �. Under the modi�ed imitation rule, for any �nite r > 1,
there exists a unique stochastically stable state in the imitative learning dynamics of the

Tullock contest, which is given by mon (0) if � > 1 and mon (v) if 0 < � < 1.

Proof. The cost of the transition frommon (0) tomon (v) is � since the minimal number
of experimentations required for the transition is one and the experimentation rate in

mon (0) is ��. Hence, the stochastic potential of mon (v)-tree is � � (1� �). We have
shown in the proof of Proposition 2 that any transition frommon (v) tomon (x) for every

x 2 (0; v) involves more than one cost. Therefore, the stochastic potential ofmon (x)-tree
3Bergin and Lipman (1996) show that any prediction can be attained depending on the restrictions

on how experimentation rates vary across states that are contained in a limit set of an unperturbed
dynamic. This result leads to two implications. One is that the re�nement of multiple long-run equilibria
by introducing experimentations is meaningless. The other is that we should derive an economically
justi�able restriction on the experimentation process.
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for every x 2 (0; v) is more than � � (1� �). That is, mon (x) for any x 2 (0; v) is not
a stochastically stable state regardless of �. Since the experimentation rate in mon (x)

for any x 2 (0; v] is assumed to be �, the stochastic potential of mon (0)-tree is �. Hence,
compared with the stochastic potential of mon (v)-tree, the one of mon (0)-tree is smaller

if � > 1 and greater if 0 < � < 1.

When the highest payo¤ observed in the contest is negative, in the modi�ed imitative

learning rule, each rent-seeker realizes that there is nothing to learn by imitation and

thus chooses zero expenditure. Therefore, in the state where all rent-seekers are inactive,

i.e., mon (0), we should regard that each rent-seeker has nothing to learn by imitation

because he knows a priori that zero expenditure yields zero payo¤for him regardless of the

other rent-seekers�choices. Since the rent-seekers cannot, in fact, imitate the others, the

experimentation rate in mon (0) would be higher compared with any monomorphic state

where all rent-seekers engage in rent-seeking activities. In addition, a rent-seeker would

tend to make a positive expenditure arbitrarily if nobody tries to win the prize that hangs

in before him. Therefore, it would be reasonable for us to assume that � < 1, whereas it

is di¢ cult to justify the assumption that mon (v) involves a higher experimentation rate

than mon (0). This is because the rent-seekers are able to learn by imitation in mon (v)

if they so desire.

If the rent-seekers have to pay a �xed amount of entry fee when they revise their

zero expenditure, the experimentation rate in mon (0) may decrease as compared with

the case in which no entry fee is required. The reason for this is that the presence of

the �xed entry fee would discourage the rent-seekers from changing the status quo in

mon (0). When r > 1 and the entry fee is su¢ ciently large such that � > 1, socially

wasteful rent-seeking expenditures cannot be observed at all in the states that prevail in

the long run.

5 Conclusions

The evolutionary dynamics behind a �nite population ESS in the Tullock contest, as

mentioned in Hehenkamp et al. (2004), are mainly driven by imitative behavior among

rent-seekers. We have modeled such imitative behavior explicitly in the dynamic Tullock

contest and have demonstrated that the unique stochastically stable state is consistent

with the �nite population ESS derived in Hehenkamp et al. (2004). Moreover, the
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stochastically stable state can involve a higher rate of overdissipation than the �nite

population ESS.

One source of overdissipation is the lack of individual rationality. In other words,

without individual rationality rent-seekers engage in the contest even though they incur

a negative payo¤, and thus, the sum of the individual expenditures is more than the

value of the rent. However, the notion of the ESS cannot exclude any imitative behavior

that results in a negative individual payo¤, although it is di¢ cult to �nd such irrational

behavior in any real life contest. The �nite population ESS derived by Hehenkamp et al.

(2004) does not satisfy individual rationality for any r in the interval of (1; N= (N � 1)]
such that it yields overdissipation. Therefore, in order that the ESS is compatible with

individual rationality, our analyses must be restricted to the case in which r � 1, whereas
by reconciling individual rationality with imitation of the most successful behavior, we

have shown that there exists a stochastically stable state for any �nite r.

Corcoran (1984) and Corcoran and Karels (1985) have studied a long-run equilibrium

of the rent-seeking contest endogenizing the entry decisions of rent-seekers. They showed

that the number of rent-seekers who have decided to participate in the contest increases

or decreases until the payo¤s for the active rent-seekers fall to zero to the extent that 1

< r � N= (N � 1). Therefore, in the long-run equilibrium of their free entry model, for

any r 2 (1; N= (N � 1)], individual rationality or participation constraints are satis�ed,
and thus, the rent is fully dissipated. Itaya and Sano (2003) have examined the long-run

behavior of rent-seekers, each of whom chooses a mixed strategy for deciding whether to

stay in or exit from the Tullock contest in the multi-period setting. They veri�ed that

for some r > N= (N � 1), overdissipation can arise in each period4 while the sum of the

present discounted values of the per-period expected payo¤s is equal to zero, i.e., the sum

of the present discounted values of the rents will be fully dissipated over time ex ante. In

this paper, we have shown that for any �nite r � 1, the rent is fully dissipated in one of
two stochastically stable states under the modi�ed imitative learning rule. This implies

that in the long run, the occurrence of overdissipation is rare and the �full-dissipation

hypothesis�may still be valid even though r is greater than 1.

Since rent-seeking competition may entail some illegal activities such as bribes, each

rent-seeker would not be able to observe expenditures of the other rent-seekers. In such

4Itaya et al. (2003) introduced a minimum expenditure that is required to achieve the positive
probability of winning the contest. Owing to the minimum expenditure, exiting decisions of rent-seekers
can be compatible with individual rationality.
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a case, it is not appropriate to assume the imitative learning behavior of rent-seekers,

and therefore, we should assume that the rent-seekers are learning only from their own

experiences, which is known as introspective learning. With an introspective learning

rule, we may obtain a long-run equilibrium result greatly di¤erent from the results that

we have derived in this paper.5 This issue will be approached in future research.

Appendix

Proof of Proposition 2. Clearly, no nonmonomorphic state belongs to a limit set of the
unperturbed Markov process in the modi�ed imitation rule. Moreover, any monomorphic

state mon (x) such that x > v yields a negative individual payo¤, i.e., �i (t� 1) = v � x
< 0. Since MIM (t� 1) = ? when �i (t� 1) < 0, player i will choose xi = 0 with a

positive probability in period t. Therefore, for every x > v, mon (x) is not in a limit

set of the unperturbed Markov process. Thus, the only candidates for a stochastically

stable state are monomorphic states where all players choose the identical expenditure

that belongs to the discrete interval [0; v] � �. Without loss of generality, the number of
strategies in [0; v] is assumed to be � + 1 such that 1 � � < z.
Consider �rst the case in which 0 < r � 1. In this case, mon (rv) results in a

nonnegative payo¤. In addition, from Lemma 2, rv is a global maximizer of � (x; rv;m)

for any r � 1. Hence, mon (rv) is a unique stochastically stable state when r � 1.
Next, consider the case in which 1 < r < 1. From (8) and (9), we have � (0; v;m)

= �mv= (N �m) < 0 and @
@x
� (0; v;m) = �1, respectively. Moreover, � (x; v;m) is

strictly convex for x < �
1
r v and strictly concave for x > �

1
r v. Therefore, � (x; v;m) = 0

has at most two real roots. Since r > 1, from (9) we obtain @
@x
� (v; v;m) = r � 1 > 0

regardless of m. This implies that x = v is the smaller one of the two real roots as

represented in Figure 2. Hence, we obtain

� (x; v;N � 1) < 0 for any x 2 [0; v) . (A1)

Thus, any transition from mon (x) to mon (v) for any x 2 [0; v) requires only one cost.
Accordingly, the cost of a tree rooted in mon (v) is � such that mon (v) is contained in a

5Bergin and Bernhardt (2004) have investigated both cases in their settings. They claim that intro-
spective learning is the key condition to ensure that a dynamic system converges to Nash equilibrium
states.
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Figure 2: Con�guration of the graph of the function � (x; v;m) for r > 1

stochastically stable set of the perturbed Markov process. Further, we have

� (x; v; 1) < 0 for any x 2 (0; v) . (A2)

This implies that any transition from mon (v) to mon (x) for every x 2 (0; v) involves
more than one cost. Hence, mon (x) for any x 2 (0; v) never belongs to the stochastically
stable set.

Finally, we demonstrate that mon (0) is another stochastically stable state. Consider

a monomorphic state mon (x0) for any x0 2 (0; v]. From (14), we have � (x0; rv;N � 1)
� 0 for any r 2 (1; N ]. That is, the minimal number of experimentations necessary for
the transition from mon (x0) to mon (rv) is one when 1 < r � N . Since rv is contained
in the basin of attraction of mon (0), the cost of the arrow from mon (x0) to mon (0) is

one for any r 2 (1; N ]. Next, suppose that N < r < 1. Then, we obtain from (9), for

any m 2 [1; N � 1],
@

@x
� (v +�; v +�;m) =

(r � 1) v ��
v +�

. (A3)

Since v is assumed to be contained in � and r > N , we have (r � 1) v > (N � 1) v > v
� �; thus, (A3) is positive for any �nite r > N . In addition, the fact that (N � 1) v
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> � yields � (0; v +�;N � 1) = � (N � 1) v + � < 0. Therefore, for any x0 2 (0; v],
� (x0; v +�;N � 1) < 0 since � (v +�; v +�;N � 1) = 0 and � (0; v +�;N � 1) < 0
together with the only one in�ection point of � (x; v +�;N � 1). This implies that for
any x0 2 (0; v] the cost of the arrow from mon (x0) to mon (v +�) is just one. Since

mon (v +�) is in the basin of attraction of mon (0), mon (0) also has the minimum

stochastic potential � for any �nite r > N .
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