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1 Introduction

The standard tax competition model constructed by Zodrow and Mieszkowski (1986) and

Wilson(1986) assumes that a decision maker in each jurisdiction takes an economy-wide

net return to capital parametrically. In other words, each jurisdiction is assumed to be

very small in that a jurisdictional tax policy cannot a¤ect the net return to capital and

thus has no e¤ect on residents�utilities in other jurisdictions. In the �purely competitive�

equilibrium with atomistic jurisdictions, capital tax competition results in ine¢ ciently low

tax rates and local public service levels.

Wildasin(1988) studies capital tax competition in the case where each jurisdiction

a¤ects residents�utilities in other jurisdictions by changing the economy-wide net return

to capital. With this strategic consideration, the size of each jurisdiction or equivalently

the number of jurisdictions is important. Each jurisdiction is assumed to be large enough

for a unilateral change in the tax rate to a¤ect the amounts of capital employed in

other jurisdictions positively or negatively. Hoyt(1991) shows that the capital tax rate

of each jurisdiction in a Nash equilibrium decreases with the number of jurisdictions,

and converges to the tax rate in the purely competitive equilibrium with small atomistic

jurisdictions as the number of jurisdictions goes to in�nity. The latter result implies that

the purely competitive equilibrium is equivalent to the Nash equilibrium among atomistic

jurisdictions.

In this paper, we are concerned with an alternative model where each decision maker

takes the economy-wide net return to capital parametrically even in tax competition

among �nite nonatomistic jurisdictions. We examine the long-run equilibrium of a tax

competition game adopting an evolutionary game-theoretic approach in place of the clas-

sic game-theoretic approach where the Nash equilibrium concept is commonly utilized.

In the standard tax competition model, it is assumed that each local government

attempts to maximize the utility of a representative resident in its jurisdiction. The

representative resident should be interpreted as a swing voter in either a direct or a

representative democracy, such as a median voter in majority voting. When the swing

voter who is an individual resident chooses tax policies maximizing his or her utility, he

or she would not usually have enough of the information about a capital market that is

needed to compute his or her own utility and levels of voters�utilities in other jurisdictions

given any pro�le of tax rates. Even though the voter can acquire the information, he

or she might not have the ability to compute levels of those utilities accurately. It
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would be inappropriate to describe the situations where the voters do not have enough

information and/or computation ability using a Nash game among rational agents. Also,

the Nash equilibrium concept is not plausible in that it requires common knowledge of

rationality among voters across all jurisdictions. To deal with a tax competition game

among boundedly rational voters, therefore, we apply a concept of equilibrium selection

in an evolutionary setting rather than the Nash equilibrium concept.

Boundedly rational voters need to learn from past experiences to choose their tax

policies. Learning behavior has two classes: one is learning from one�s own jurisdiction�s

experiences only, and the other is learning from the federation-wide experiences. The

former is called introspective learning and the latter is imitative learning. In this pa-

per, we consider imitative learning behaviors in a discrete-time dynamic setting. More

speci�cally, we assume that in the next period the boundedly rational voters imitate

the currently most successful tax policy. Behavioral assumptions in many local public �-

nance literature are closer to imitative learning behaviors than introspective learning. For

example, in Tiebout�s(1956) model and those of his successors, individual residents are

assumed to move into the jurisdiction in which the highest level of utility can be attained.

In Besley and Case(1995) and Wrede(2001), who studied yardstick competition among

self-interested governments, the voters compare performances of other governments with

their own government in order to determine whether to reelect the incumbents or not.

Thus, it would be natural that we focus on imitative learning behaviors rather than

introspective learning.1

There have been few studies in local public-�nance literature that attempted to deal

with a game among boundedly rational voters as long as we know. In contrast, in in-

dustrial organization there is much research on various types of oligopolistic competition

among boundedly rational agents. Scha¤er(1989) describes Cournot competition as a

Darwinian model of economic natural selection and shows that the evolutionarily stable

strategy (ESS) which survives the selection process is not any Cournot�Nash equilibrium

strategy but yields an e¢ cient level of output. Vega-Redondo(1997) models learning

dynamics of Cournot competition explicitly. He also proves that the e¢ cient level of

output is stochastically stable in the perturbed imitative dynamics where oligopolists

imitate the currently most successful output. Alós-Ferrer, Ania and Schenk-Hoppé(2000)

1If the voters are not able to observe other jurisdictions�tax rates and/or private and public service
consumptions, then the presumption of introspective learning is more appropriate than imitative learning.
Bergin and Bernhardt(2004) investigate both cases in their setting.
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investigate Bertrand competition in their imitative dynamics following the model of Vega-

Redondo(1997).

We consider the two concepts of equilibrium selection. The �rst is a �nite population

ESS de�ned in Scha¤er(1988). When using the de�nition of a standard ESS, our analysis

is con�ned to the case of an �in�nite�population with in�nitesimally small agents. Hence,

we use the de�nition of the �nite population ESS because it is suitable for our analysis

of capital tax competition with �nite nonatomistic jurisdictions. Although the ESS is a

central concept of equilibrium selection, it does not provide an explicit dynamic selec-

tion process. Therefore, it is not certain whether imitative learning behaviors are the

main driving forces in the selection process in which an ESS survives. Secondly, taking

this drawback into account, we investigate a stochastically stable state (SSS) adopted

in Foster and Young(1990), Kandori, Mailath and Rob(1993) and Young(1993). The

stochastically stable state is a state which belongs to the support of the limit invariant

distribution of a perturbed Markov process. We formalize imitative dynamics of tax

competition as a speci�c perturbed Markov process along the lines of the approach by

Vega-Redondo(1997). We will �nd that a unique ESS in our tax competition game co-

incides with the strategy consisting of a unique SSS in the imitative dynamics of tax

competition. Moreover, in both investigations, we will obtain the same result as in the

purely competitive equilibrium even with �nite nonatomistic jurisdictions.

The rest of this paper is organized as follows. Section 2 presents the basic model.

In Section 3, we derive a Nash equilibrium tax rate and verify its existence. Section 4

deals with a �nite population ESS. In Section 5, we formalize imitative dynamics of tax

competition and �nd out a stochastically stable state, and Section 6 concludes.

2 The basic model

Consider a federal state with a set of jurisdictions J = f1; 2; : : : ; ng. Each of the ju-
risdictions is inhabited by the identical number of individuals who are immobile among

jurisdictions. Total number of individuals in the federal state is assumed to be a �xed N

� n. The total amount of capital stock in the economy, denoted by �K, is also constant.

Competitive �rms in jurisdiction i 2 J produce a homogeneous private good x combining
capital that is perfectly mobile across jurisdictions with a �xed immobile factor of labor.

Each resident is endowed with one unit of labor that is always employed. The production
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of the private good per capita is given by f (ki) where ki denotes the per capita capital

stock located within jurisdiction i. Furthermore, we assume that the production function

is quadratic,

f (ki) =

�
a� b

2
ki

�
ki, (1)

where a and b are positive parameters. Thus, we have f 0 (ki) = a� bki and f 00 (ki) = �b.2

To ensure that f 0 > 0, it is assumed that a � bn�k where �k � �K=N .

A source-based tax can be imposed on a unit of capital employed in jurisdiction i

at rate � i. Perfect mobility of capital across jurisdictions results in a common net (or

after-tax) return to capital, denoted by �. Therefore, pro�t-maximizing behaviors of

competitive �rms yield

f 0 (ki) = a� bki = �+ � i for every i 2 J: (2)

The capital market-clearing condition
Pn

j=1 kj = n�k together with (2), we obtain

� = a� b�k � �� , (3)

ki =

��k + ���� i
b

0

if � i < nb�k
n�1 + ���i,

otherwise,
(4)

where �� �
Pn

j=1 � j=n, i.e., an average rate of capital tax, and ���i is an average tax rate

among jurisdictions except for i. Hence, the net return to capital � at the equilibrium of

the capital market depends on the average tax rate �� . Di¤erentiating (3) with respect to

� i for any i 2 J yields
�0 � d�

d� i
= � 1

n
. (5)

Moreover, di¤erentiating ki with respect to � i and � j (j 6= i), respectively, we obtain

@ki
@� i

= �n� 1
nb

< 0; (6a)

@ki
@� j

=
1

nb
> 0, (6b)

when � i < nb�k= (n� 1)+���i. Eq. (6a) represents the degree of capital out�ow from juris-
diction i by an in�nitesimal increase in the tax rate of jurisdiction i. Conversely, capital

2Henceforth, a prime attached to a function with one variable means the derivative of the function.
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in�ow to jurisdiction i occurs when jurisdiction j 6= i raises the tax rate in�nitesimally.

The degree of capital in�ow can be seen in (6b).

Regional government i 2 J provides a local public service gi that is assumed to be a
publicly provided private good with complete rivalry.3 Assume that producing one unit of

the public service requires one unit of the private good as a numeraire good. To provide

the local public service, regional government i can use only a source-based capital tax.

Thus, using (4), the budget constraint per resident for government i is given by

gi = � iki = � i�k +
� i (�� � � i)

b
, (7)

if � i < nb�k= (n� 1) + ���i, otherwise gi = 0: The rate of the source-based capital tax is
determined through majority voting. Furthermore, government o¢ cials or politicians are

assumed to be unable to acquire their ego rents.

It is assumed that each individual in the economy has an identical preference for

private and local public-service consumption. The identical individual preference is de-

scribed by the utility function u (xi; gi) which is at least twice-continuously di¤erentiable.

Let the marginal rate of substitution be denoted by mrsi (xi; gi) � uig=u
i
x. Furthermore,

we need the following assumptions.

Assumption 1. For every i, uix � @
@xi
u (xi; gi) > 0, uig � @

@gi
u (xi; gi) > 0, uixx �

@2

@x2i
u (xi; gi) � 0 and uigg � @2

@g2i
u (xi; gi) � 0.

Assumption 2. For every i and for all xi; gi > 0, @
@xi
mrsi (xi; gi) � 0 and @

@gi
mrsi (xi; gi)

� 0.

Assumption 3. For every i and for all xi > 0, mrsi (xi; 0) > 1.

Assumption 1 requires that the utility function is monotonically increasing for both

goods and that neither marginal utility is increasing. Assumption 2 formally states that

neither good is inferior. Assumption 3 implies that each individual is willing to forgo

more than one unit of the private good to consume the �rst unit of the public service.4

3Although we can also assume a public service with more general properties, introducing nonrivalry
of the local public service complicates the investigation on the e¤ects of a change in the jurisdictions�
size on tax competition.

4If we assume that mrsi (xi; 0) � 1, the tax rate in the e¢ cient allocation is always zero since the
marginal rate of transformation between the public services and the private goods is equal to one. This
case is trivial for investigations of a tax competition game because a Nash equilibrium tax rate is also
zero when mrsi (xi; 0) � 1.
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All individuals are assumed to be initially endowed with the amount of capital equal

to the average capital endowment �k � �K=N . Using (3) and (4), the budget constraint

for each individual in jurisdiction i is

xi = f (ki)� f 0 (ki) ki + ��k = f
�
�k
�
� � i�k +

(�� � � i)
2

2b
, (8)

if � i < nb�k= (n� 1) + ���i, otherwise xi = ��k. Di¤erentiating (7) and (8) with respect to

� i < nb�k= (n� 1) + ���i, respectively, we obtain

@gi
@� i

= �k +
�� � � i
b

� n� 1
n

� i
b
= ki �

n� 1
n

� i
b
, (9)

@xi
@� i

= �
�
�k +

n� 1
n

�� � � i
b

�
= � 1

n

�
(n� 1) ki + �k

�
< 0. (10)

We can observe from (9) that a unilateral increase in the tax rate at � i = �� raises the

local public service if �k � n�1
n

��
b
> 0. Eq.(10) shows that the private consumption always

decreases with the tax rate.

Finally, both gi and xi depend on
P

j 6=i � j as well as � i, thus the indirect utility for a

resident in i is represented as V
�
� i;
P

j 6=i � j

�
.

3 Symmetric Nash equilibrium

In this section, we characterize a symmetric Nash equilibrium among rational voters who

have common knowledge of rationality and are able to compute their outcomes contingent

on tax policies accurately with full information. Because all individuals are identical with

respect to their preferences and endowments, any individual in each jurisdiction becomes

a median voter who can force the regional government to choose his or her most preferred

tax rate through majority voting.

Lemma 1 Under assumptions 1�2 and the quadratic production function, the indirect
utility function V

�
� i;
P

j 6=i � j

�
has a single peak with respect to � i given any

P
j 6=i � j.

Proof. See Appendix.

Lemma 1 states that there is the only one capital tax rate chosen by jurisdiction i

through majority voting given
P

j 6=i � j. Henceforth, the optimal tax rate for i denoted by
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� i

�P
j 6=i � j

�
. Bucovetsky (1991) showed that there exists a Nash equilibrium among two

nonidentical jurisdictions when the production function is assumed to be quadratic. Sim-

ilarly, given the quadratic production function de�ned above, we can obtain the existence

and uniqueness of a symmetric Nash equilibrium among �nite n identical jurisdictions.

Proposition 1 Let assumptions 1�3 hold and the production functions be quadratic.
Then, there exists a unique symmetric Nash equilibrium in the capital tax-competition

model with �nite identical jurisdictions.

Proof. Suppose that the median voter in jurisdiction i chooses � i 2 C so as to maximize
V
�
� i; (n� 1) �SNE

�
, where C is a continuum of tax rates on the interval [0;1) in R+ and

�SNE denotes the tax rate in a symmetric Nash equilibrium. The �rst-order condition

for an interior solution of this maximization problem is, using (9) and (10),

uig
uix
=
ki � 1

n

�
ki � �k

�
ki � n�1

n
� i
b

for any i 2 J . (11)

Thus, we have the following necessary condition for a symmetric Nash equilibrium:

mrsi (xi; gi) =
�k

�k � n�1
n

�SNE

b

for any i 2 J . (12)

The consumptions for both goods in the symmetric Nash equilibrium are, respectively,

xSNE = f
�
�k
�
� �SNE�k and gSNE = �SNE�k. (13)

Lemma 1 implies that for given any
P

j 6=i � j, there is at most one tax rate as the best

response that corresponds to the bliss point of the median voter in jurisdiction i. There-

fore, if �SNE satis�es the condition (12), then for every i 2 J , V
�
�SNE; (n� 1) �SNE

�
>

V
�
� i; (n� 1) �SNE

�
for any � i 2 Cn

�
�SNE

	
.

Next, we verify that �SNE satisfying (12) uniquely exists. The right-hand side of (12)

is monotonically increasing in �SNE, and moreover it is equal to 1 when �SNE = 0 and

goes to in�nity as �SNE approaches to nb�k= (n� 1). We claim that the left-hand side of

(12), i.e., mrsi (xi; gi) is not increasing in �SNE owing to Assumption 2. Suppose that

all jurisdictions carry out coordinated increases in �SNE. Then, di¤erentiating xSNE and
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gSNE in (13) with respect to �SNE, we obtain

@xSNE

@�SNE
= ��k and @gSNE

@�SNE
= �k, (14)

respectively. Thus, using (14), the e¤ect of coordinated increases in �SNE on mrsi (xi; gi)

is
@

@�SNE
mrsi (xi; gi) =

�
@mrsi

@gi
� @mrsi

@xi

�
�k � 0, (15)

since @mrsi=@gi � 0 and @mrsi=@xi � 0 by Assumption 2. When �SNE = 0, we have gi
= 0 so that mrsi (x; 0) > 1 from Assumption 3, while the right-hand side of (12) is equal

to unity. As �SNE approaches nb�k= (n� 1), the right-hand side of (12) goes to in�nity.
Hence, we can obtain a unique �SNE lying strictly between 0 and nb�k= (n� 1).

We can now investigate the e¤ect of an increase in n on the symmetric Nash equilib-

rium. That n increases might be regarded as �scal decentralization because it means the

increase in the number of jurisdictions that can independently determine some policies

for taxation and public expenditures. Totally di¤erentiating (12) yields

d�SNE

dn
= �SNE�k

�
n�k � n� 1

b
�SNE

��2 264b @mrsi
@�SNE

� (n� 1) �k

n
�
�k � n�1

n
�SNE

b

�2
375
�1

(16)

Since @mrsi=@�SNE � 0 from (15) and b > 0, we have d�SNE=dn < 0, that is, �SNE

decreases as n increases. Intuitively, �scal decentralization lowers the equilibrium tax

rate because tax competition becomes more intense. The same property is derived in

Hoyt (1991).

Some tax-competition literature (e.g., Wilson [1986] and Zodrow and Mieszkowski

[1986]) considers a case of many small identical jurisdictions, i.e., a purely competitive

model. Assuming that �0 = 0, we can capture the purely competitive case. Let a sym-

metric Nash equilibrium in this case be denoted by � �. Then, using (9) and (10), � � is

such that

mrsi (x�; g�) =
�k

�k � ��

b

: (17)

This expression can be also attained as n ! 1 in (12). Therefore, it is clear from the

proof of Proposition 1 that the symmetric Nash equilibrium tax rate satisfying (17) is
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uniquely determined. Comparing (17) with (12), the tax rate in the purely competitive

equilibrium is lower than in the Nash equilibrium with any �nite number of jurisdictions.

4 Economic natural selection

This section investigates an evolutionarily stable strategy (ESS) in the capital tax com-

petition game. The analysis of an ESS is generally carried out in the context where

there is an in�nite population in that the agents are in�nitesimal relative to the size of

the population. From the viewpoint of reality, however, it would not be appropriate to

assume that each jurisdiction is in�nitesimally small. Alternatively, we de�ne an ESS in

the case that the number of jurisdictions is �nite according to Scha¤er (1988).

De�nition 1 (Finite population ESS) A strategy �ESS is evolutionarily stable if for
any other strategy � ,

V
�
�ESS; � + (n� 2) �ESS

�
> V

�
� ; (n� 1) �ESS

�
for every i 2 J . (18)

Let a jurisdiction choosing �ESS be called an ESS strategist while any � 6= �ESS be

an mutant strategist. De�nition 1 states that if n� 1 ESS strategists can repel 1 mutant
strategist, then �ESS is an evolutionarily stable strategy.

An ESS de�ned in De�nition 1 can repel only one mutant strategy but may not be able

to repel several mutant strategies once two or more identical mutant strategists appear

simultaneously. More generally, in a state where m players choose � 6= �ESS and n �m

players �ESS, an ESS can repel m identical mutant strategist if m � M but the mutant

strategies can survive if m > M , where M is some integer between 0 and n. This implies

that the greater the value of M is, the more simultaneous mutations can be repelled by

the ESS. Therefore, the value of M means the degree of stability of the ESS in our tax

competition game.

De�nition 2 (Stability of ESS) A strategy �ESS is M-stable if for any other strategy
� and for all m 2 [1;M ] where M � n� 1,

V
�
�ESS;m� + (n�m� 1) �ESS

�
> V

�
� ; (m� 1) � + (n�m) �ESS

�
, (19)
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for every i 2 J . The ESS is globally stable if M = n� 1.

For the purpose of identifying an ESS, it is useful to consider the following relative

utility:

�(� ; ~� ;m) � V (� ; (m� 1) � + (n�m) ~�)� V (~� ;m� + (n�m� 1) ~�) . (20)

If � = �ESS is a strict global maximizer of �
�
� ; �ESS;m

�
for any m 2 [1;M ], then �ESS

is an ESS which isM -stable since �
�
�ESS; �ESS;m

�
= 0 and thus �

�
� ; �ESS;m

�
< 0 for

all � 6= �ESS. Suppose that �ESS is not a strict global maximizer. Then, there is some � 0

such that �
�
� 0; �ESS;m

�
� 0. This means that � = �ESS is not anM -stable ESS. Hence,

there exists aM -stable ESS if and only if �
�
�ESS; �ESS;m

�
is a strict global maximum for

any m 2 [1;M ]. In order for �ESS to be a global maximizer, local maximizing conditions
must be satis�ed with � = �ESS, i.e., @

@�
�
�
�ESS; �ESS;m

�
= 0 and @2

@�2
�
�
�ESS; �ESS;m

�
< 0. In other words, if �ESS does not satisfy the local maximizing conditions, then it is

not an ESS.

The �rst-order condition for the local maximum of �
�
� ; �ESS;m

�
is

@

@�
�
�
�ESS; �ESS;m

�
=

�
�k � �ESS

b

�
uig � �kuix = 0, (21)

or equivalently, mrsi = �k
�k��ESS=b . Therefore, �

ESS must be equal to � � satisfying (17) if it

is a local maximizer. We have already seen that the symmetric Nash equilibrium strategy

�SNE is greater than � � which is the symmetric Nash equilibrium strategy in the purely

competitive case. This implies that �SNE cannot be a local maximizer of �
�
� ; �SNE;m

�
whatever m we have. Thus, we obtain the following proposition:

Proposition 2 Let assumptions 1�3 hold and the production functions be quadratic.
When there are �nite number of jurisdictions, the unique symmetric Nash equilibrium

strategy is not evolutionarily stable. If an ESS exists, then it is unique and satis�es (17).

The uniqueness of the ESS is straightforward from the uniqueness of the symmetric

Nash equilibrium in the purely competitive case since �ESS = � �. The unique ESS does

not depend on the number of jurisdictions n � 2. That is, �scal centralization through
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Figure 1: Relative utility curves and the globally ESS

a decrease in the number of jurisdictions could not reduce the e¢ ciency losses of tax

competition at all unless the �scal system were completely centralized.

Since an ESS is required to be a global maximizer of �
�
� ; �ESS;m

�
, it is very di¢ cult

to prove the existence of an ESS without the following assumption regarding preference

in addition to assumptions 1�3:

Assumption 4. For every i and for all xi; gi > 0, uigx � @2

@xi@gi
u (xi; gi) � 0.

Although assumption 4 is stronger than assumptions 1�3, many speci�c utility func-

tions such as the Cobb�Douglas utility and the CES utility satisfy assumption 4.

Proposition 3 Let assumptions 1�4 hold and the production functions be quadratic.
Then, there exists a unique global ESS that satis�es (17).

Proof. See Appendix.

Figure 1 illustrates relative utility curves in numerical examples where n = 10, a

= 101, b = 2 and �k = 1, and each individual has the Cobb�Douglas utility ui = x0:5i g0:5i .

In the purely competitive equilibrium of this example, we obtain � � � 1:96. The relative
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utility curve for each m 2 f1; 2; 3; 4; 5; 6; 7; 8; 9g drawn in Figure 1 is globally maximized
at � � � 1:96. That is, the purely competitive equilibrium tax-rate � � � 1:96 is equal to
a unique global ESS.

5 Imitative learning dynamics

Evolutionary stability does not specify a dynamic selection process which forces to attain

the state consisting of all the ESSs. Moreover, we cannot estimate the speed of conver-

gence to a evolutionarily stable set as a long-run equilibrium. In this section, we explicitly

model a situation where imitative behaviors among voters prevail in evolutionary dynam-

ics. For technical reasons, we assume that the strategy space is a �nite grid, i.e., � =

f0;�; 2�; :::; z�g where � 2 R++ and z 2 N. � can be arbitrary small. The only

restriction imposed on � is that � � 2 �. All that voters can observe are the capital tax
rates � = (� 1; : : : ; �n), the private consumptions x = (x1; : : : ; xn), and the local public

expenditures g = (g1; : : : ; gn). It is not plausible that each voter can observe utility levels

of voters in other jurisdictions. Alternatively, the voters in jurisdiction i could know their

own utility levels that would be attained if they consumed an observed bundle fxj; gjg.
The evolutionary dynamics proceed in discrete time, indexed by t = 0; 1; 2; : : :. De-

note the private consumption of the median voter i at t by xi (t), and the local public

expenditure and the capital tax rate of jurisdiction i at t by gi (t) and � i (t), respectively.

For brevity, we denote V
�
� i (t) ;

P
j 6=i � j (t)

�
by vi (t) : At each t, there are two stages

at which each government makes its decisions faithfully according to the median voter�s

demand. In the �rst stage, it is determined whether government i revises its tax rate

� i (t� 1) with a common and independent probability � > 0 or not. If government i

decides to revise, the decision process proceeds to the second stage in which government

i chooses from the set,

IM (t� 1) =
n
� j (t� 1) 2 � j vj (t� 1) = max

�
vl (t� 1)

	
l2J

o
; (22)

according to an independent probability distribution with full support. We can see that

through the imitation rule de�ned in (22), the n-dimensional vector of tax rates at t, de-

noted by � (t), is determined by a n-dimensional vector of tax rates at t�1 � (t� 1). That
is, we have a discrete-time Markov process with �nite state space �n. Let a monomorphic
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state in which all governments choose the same capital tax rate � be denoted by mon(�)

= (� ; � ; : : : ; �). We obtain the following results:

Lemma 2 Any monomorphic state mon(�) is a singleton absorbing set of the imitative
dynamics. And, any absorbing set is in fmon(�)g�2�.

Proof. It is straightforward from the imitation rule that for any � 2 �, the state mon(�)
leads to a absorbing set of the imitative dynamics. Suppose, contrary to our latter claim,

that a absorbing set is in a set of nonmonomorphic states. Since each government chooses

any � 2 IM (t� 1) with positive probability, there is always positive probability that the
process will transit from the set of nonmonomorphic states to the other set of states.

This contradicts to our assumption that the set of nonmonomorphic states contains a

absorbing set.

Therefore, there are z + 1 singleton absorbing sets since the number of monomorphic

states is equal to the number of the available tax rates in the �nite strategy space �.

5.1 Stochastically stable states

We now introduce experimentation that will occur with some common independent prob-

ability � > 0. Once experimentation occurs, � i (t) 2 � is chosen according to some given
probability distribution with full support on �. Thus, for each � > 0, the perturbed

Markov process has the irreducible transition matrix so that there is a unique invariant

distribution �� which is independent of initial conditions and assigns positive probabil-

ity to all states in �n. The invariant distribution ��, however, depends on the occur-

rence of experimentation �, and moreover will concentrate almost all of its probability

on a few states as � ! 0 (see, Foster and Young [1990], Kandori, Mailath and Rob

[1993], and Young [1993]). That is, we can investigate the relative robustness among the

monomorphic states as the occurrence of experimentation vanishes. Hence, we focus on

the limit invariant distribution of the perturbed Markov process as � ! 0, denoted by

�� � lim�!0 ��. If a state is assigned some positive probability according to the limit

invariant distribution ��, then the state is called stochastically stable: A stochastically

stable set consists of all states with positive probabilities. Stochastically stable states

are, intuitively, the states that are most likely to be observed over the long run when the

occurrence of experimentation is rare.

13



According to recent evolutionary literature, we use the techniques given by Freidlin

and Wentzell (1984) to �nd a stochastically stable state. Any ordered pair of states is

called �arrow�, which is denoted by (� 0; � 00) for � 0; � 00 2 �n. For each � 2 �n, a � -tree is a
collection of the arrows such that every � 0 2 �nnf�g is the �rst element of the arrow, and
for every � 0 2 �n nf�g there is a path f(� 0; � 1) ; (� 1; � 2) ; : : : ; (� s�1; � s)g where � 0 = � 0

and � s = � . The cost of the arrow (� 0; � 00) is the minimal number of experimentation

needed for the transition from � 0 to � 00 to occur with positive probability. The cost of

a � -tree is the sum of the costs of all the arrows which belong to the � -tree. The least

cost among all � -trees is the stochastic potential of � . Young (1993) proves that the limit

invariant distribution �� assigns positive probability only to the states having minimum

stochastic potential. That is, any state with a minimal-cost tree among all trees of all

states is stochastically stable and a stochastically stable set consists of all the states with

minimal-cost trees.

Proposition 4 For capital tax competition among the �nite number of jurisdictions un-
der assumptions 1�4, there exists a unique stochastically stable state mon (� �) in the

imitative dynamic.

Proof. Since � � is the globally ESS, if m = n � 1, then using (20) we obtain that for
every � 2 � n f� �g,

V (� �; (n� 1) �) > V (� ; (n� 2) � + � �) . (23)

The cost of mon (� �)-tree is z since the inequality (23) implies that for every � 2 �nf� �g
the total cost of the arrows along with a path from mon (�) to mon (� �) is just one.

Therefore, the stochastic potential of mon (� �) is equal to z. Clearly, z is the minimum

stochastic potential. Hence, mon (� �) is contained in the stochastically stable set.

Next, we must show that the stochastically stable set is singleton, i.e., mon (� �) is a

unique stochastically stable state. Lemma 2 states that no nonmonomorphic state can

be included in the absorbing sets of the unperturbed dynamics, so that it cannot be

stochastically stable since every stochastically stable state must be a absorbing state of

the unperturbed dynamics.5 Therefore, we have only to compare the cost of mon (� �)-

tree with the cost of the tree rooted in each of all the other monomorphic states. If m

5By continuity of &� in �, the limit invariant distribution of the perturbed dynamics &� is an invariant
distribution of the unperturbed dynamics.
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= 1, then we have from (20) that for every � 2 � n f� �g,

V (� �; � + (n� 2) � �) > V (� ; (n� 1) � �) . (24)

This implies that given any � 0 2 � n f� �g ; any transition from mon (� �) to mon (� 0) does

not occur with only one experimentation. That is, for every � 0 2 � n f� �g the total cost
of the arrows along with any path from mon (� �) to mon (� 0) must be more than one,

thus the cost of mon (� 0)-tree is more than z. Hence, for all � 0 2 � n f� �g, mon (� 0) is not
contained in the stochastically stable set.

Whenever the global ESS exists, a stochastically stable state is uniquely determined.

In addition, the strategy in the unique SSS coincides with the global ESS. Since � � <

�SNE, the unique SSS involves a greater e¢ ciency loss than the Nash equilibrium. In

other words, the imitative behaviors among boundedly rational voters tend to be harmful

to allocative e¢ ciency as compared with Nash behaviors by rational and well-informed

voters. Moreover, �scal centralization through a decrease in the number of jurisdictions

could not reduce the e¢ ciency losses of tax competition at all unless the �scal system

were completely centralized.

5.2 Speed of convergence

In the proof of Proposition 4, we have seen that the cost of the tree rooted in the unique

stochastically stable state mon (� �) is one. This means that the basin of attraction of

mon (� �), denoted by B�, is the set consisting of all states where one or more jurisdictions

choose � �.6 The number of periods spent before arriving at mon (� �) starting from any

initial state in B� is hardly a¤ected by the experimentation rate � although it depends

on the degree of inertia 1 � �. Therefore, given any initial state in B�, the time spent

until reaching mon (� �) is reduced when � is su¢ ciently close to one. On the other hand,

in order to enter into B� starting from any state outside B�, at least one jurisdiction has

to experiment and randomly choose � � from among z + 1 tax rates which can be chosen.

Let us suppose that once experimentation occurs, a tax rate is randomly chosen from �

according to the uniform distribution. Hence, the probability that each jurisdiction will

choose � � at any state outside B� is �= (z + 1) so that the expected number of jurisdictions

6The basin of attraction of mon (��) is the set of initial states from which the unperturbed Markov
process converges to mon (��) with a probability of one.
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Table 1: The expected number of periods spent outside B*
z = 30 � z = 50 �
n :01 :05 :10 :20 n :01 :05 :10 :20
3 1; 034 207 103 52 3 1; 700 340 170 85
5 620 124 62 31 5 1; 020 204 102 51
10 310 62 31 16 10 510 102 51 26
20 155 31 16 8 20 255 51 26 13
30 104 21 11 6 30 170 34 17 9
40 78 16 8 4 40 128 26 13 7
50 62 13 7 4 50 102 21 11 6
100 31 7 4 2 100 51 11 6 3

choosing � � is n�= (z + 1). Thus, the expected number of periods spent outside B� is given

by

W (�; n; z) � z + 1

n�
: (25)

If � is small but signi�cant, then the expected waiting time W (�; n; z) depends on n and

z as well as �. The e¤ect of the number of jurisdictions on the expected waiting time is

especially noteworthy in that we can compare with the comparative static results on the

Nash equilibrium tax rate. The Nash equilibrium tax rate decreases with n and converges

to � � as n ! 1. In the imitative learning dynamics, W (�; n; z) becomes shorter as n

increases. That is to say, the higher the degree of �scal decentralization, the faster

convergence to mon (� �) starting at any initial state outside B�. This result is derived

from �comparative dynamics�where the e¤ect of n on the dynamic path is investigated.

In a �scal competition model, it should be presumed that the time interval until a

current policy can be revised is longer than in other dynamic models, e.g., oligopolistic

competition where �rms revise their outputs or prices in every period. When the number

of periods needed to reach mon (� �) is very large, therefore, the system may not converge

to mon (� �) within a reasonable time horizon. If it is necessary to wait for hundreds or

thousands of years before convergence to mon (� �), we could not derive any meaningful

policy implication from mon (� �) as a long-run equilibrium. Table 1 shows the results of

numerical simulation for the expected waiting time before entering in B�. When z = 30

and n = 40, 50 or 100, it can be expected to converge to mon (� �) within 100 periods for

any � 2 f:01; :05; :10; :20g even though the initial state is outside B�. In the case that z

= 30 and n = 5, on the other hand, the number of periods needed for convergence would
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Table 2: The ratio of time spent outside B* to time spent in B*
z = 30 �
n :01 :05 :10 :20
2 :1452 :7258 1:4516 2:9032
3 :0009 :0234 :0937 :3746
5 � � :0005 :0084
10 � � � �

z = 50 �
n :01 :05 :10 :20
2 :2451 1:2255 2:4511 4:9021
3 :0016 :0401 :1602 :6408
5 � � :0009 :0148
10 � � � �
Note: A dash indicates less than :00006.

be more than 100 for each � = :01 and :05. If we cannot regard 100 periods and more

as a reasonable time horizon, then for z = 30 and n = 5 mon (� �) would not be a good

prediction when � = :01 and :05 but when � = :10 and :20. In general, from (25), the

smaller n and/or the larger z, the higher � is needed to hasten convergence to mon (� �).

A unique stochastically stable state is the only state that is assigned probability one

as � ! 0. Intuitively, when the experimentation rate is very close to zero, the system

spends almost all of its time in the long-run equilibrium where all jurisdictions choose

� �. With a sizable experimentation rate (say, � = :10 or :20), how long does the system

spend in B� relative to the number of periods spent outside B�? The probability that

each jurisdiction will experiment and choose any � except for � � in B� is �z= (z + 1) and

the system needs n simultaneous experimentations to leave B�. Therefore, the probability

that the system will leave B� at any state in B� is given by [�z= (z + 1)]n , and we have

[�z= (z + 1)]�n which is the expected number of periods spent in B�. Thereby, using (25),

the ratio of time spent outside B� to time spent in B� is

R (�; n; z) � zn

n (z + 1)n�1
�n�1: (26)

Since R converges to zero as � ! 0, for a su¢ ciently small � the system spends most of

its time in B� and therefore at the stochastically stable state mon (� �).7 The values of R

7This property is consistent with the radius-coradius theorem in Ellison (2000). The radius-coradius
theorem states that if for some set 
 that is a union of limit sets the radius of 
 is greater than the
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in (26) for each � 2 f:01; :05; :10; :20g are summarized in Table 2. If there are 5 or more
jurisdictions, the system would spend almost of its time in B� for every selected value of

�.8 Whereas, in the case that n = 3, for each � = :05, :10 and :20 we could not regard

that the time spent outside B� is negligible although the time spent in B� is relatively

long. Furthermore, when n = 2, there are some cases in which the time spent outside

B� exceeds the time in B�. For � = :001, n = 2 and z = 30; we have R = :0145 while

it will be necessary to wait for 15; 500 periods before entering in B�. To sum up, for a

su¢ ciently large n the system spends most of its time in the stochastically stable state

mon (� �) even with a fairly large value of � by which the system will converge to mon (� �)

within 100 periods.

6 Concluding remarks

Both the unique globally ESS and the unique SSS have the same result as the purely

competitive model of capital tax competition. These results are consistent with the results

of Scha¤er(1989) and Vega-Redondo(1997). A static interpretation of these long-run

equilibria is that regional decision makers choose their tax rate taking the economy-wide

net return to capital as exogenously given.9 It should be noted that the �rms behave as if

their choices cannot a¤ect the other jurisdictions�tax revenues at all in tax competition

among �nite and nonatomistic jurisdictions. Hoyt(1991) argues that the optimal number

of jurisdictions can be determined if a trade-o¤between gains from the sorting of residents

by voting with their feet and the costs of capital tax competition is considered. Our result

implies that �scal centralization is preferable to any decentralized system if the costs of

capital tax competition are greater than the gains from Tiebout sorting, and otherwise

the number of jurisdictions should be increased as much as possible.

Because selection dynamics behind evolutionary stability are not clear, we can give

a dynamic interpretation of the ESS in the context of our tax competition model. Sup-

pose that tax policies are chosen under a representative democracy. Representatives may

be rational and have enough information but they are concerned with winning the next

coradius of 
, then the stochastically stable set is contained in 
. In our model, the radius of B� is n
while the coradius of B� is 1.

8For any �<1 and z, we can easily verify that R decreases with n.
9The results in Scha¤er(1989) and Vega-Redondo(1997) are both a Cournot�Nash equilibrium as �rms

choose their outputs taking a price as exogenously given.
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election. Therefore, their political decisions could be in�uenced by pressures from voters

who prefer the tax policy most successful among all jurisdictions. Consequently, the ob-

jective of representatives that survives economic natural selection is that of maximizing

the relative utility given by (20) rather than maximizing the absolute utility of the repre-

sentative voter in their own jurisdiction. Thus, the idea of evolutionary stability provides

an insight into the objective of regional politicians.

Appendix

Proof of Lemma 1. The �rst-order derivative of V
�
� i;
P

j 6=i � j

�
with respect to � i is

Ai �
�
ki �

n� 1
n

� i
b

�
uig �

1

n

�
(n� 1) ki + �k

�
uix

=

�
2uig �

n� 1
n

uix

�
ki �

�
ki +

n� 1
n

� i
b

�
uig �

�k

n
uix, (A1)

when ki = �k + (�� � � i) =b. Di¤erentiating Ai with respect to � i yields

@Ai
@� i

= �
�
2uig �

n� 1
n

uix

�
1

nb
+

�
ki �

n� 1
n

� i
b

�2
�; (A2)

where

� � uigg � 2uigx�i + uixx�
2
i , (A3)

together with

�i �
1
n

�
(n� 1) ki + �k

�
ki � n�1

n
� i
b

. (A4)

We will show that (A2) is negative when Ai � 0, that is, V
�
� i;
P

j 6=i � j

�
is strictly

concave (i.e., @A=@� i < 0) unless it is decreasing. This implies that V
�
� i;
P

j 6=i � j

�
has

a single peak with respect to � i. The �rst term of (A2) is negative since 2uig� n�1
n
uix must

be positive when Ai � 0 from (A1). The numerator in (A4) is positive since ki > 0. In

addition, since ki � n�1
n

� i
b
> 0 from (A1) whenever Ai � 0, we have �i > 0. Thus, if uigx

� 0, then � � 0 since uigg � 0 and uixx � 0 (Assumption 1), which leads to @A=@� i < 0.
Consider the case that uigx < 0. From Assumption 2, the marginal rate of substitution

uig=u
i
x is nondecreasing in xi and nonincreasing in gi. Therefore, we have u

i
gxu

i
x � uixxu

i
g
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� 0 and uiggu
i
x � uigxu

i
g � 0, or equivalently

uigg
uigx

� uig
uix
� uigx

uixx
. We can easily verify that

� � 0 for any �i when
uigg
uigx

� uigx
uixx
. Hence, we also have @A=@� i < 0 when uigx < 0.

Proof of Proposition 3. Let the amounts of capital employed in each jurisdiction

choosing � and � �, respectively, be denoted by k+ and k�, respectively. Using (4), we

have

k+ = �k +
(n�m) (� � � �)

nb
, k� = �k +

m (� � � �)

nb
. (A5)

Correspondingly, we denote the private consumptions x+ and x�, and the local public

services g+ and g�.

x+ =
b

2

�
�k +

(n�m) (� � � �)

nb

�2
� m� + (n�m) � �

n
�k +

�
a� b�k

�
�k, (A6a)

x� =
b

2

�
�k +

m (� � � �)

nb

�2
� m� + (n�m) � �

n
�k +

�
a� b�k

�
�k, (A6b)

g+ = �

�
�k +

(n�m) (� � � �)

nb

�
, (A6c)

g� = � �
�
�k +

m (� � � �)

nb

�
. (A6d)

Thus, we obtain

x+ � x� =
�
k+ + k�
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2
7 0 if � ? � �, (A7a)

g+ � g� = (� � � �)

�
�k � m� � + (n�m) �

nb

�
? 0 if � � < � < �̂ ,

if � < � � or � > �̂ ,
(A7b)

where �̂ �
�
nb�k �m� �

�
= (n�m) > � �.

Di¤erentiating (A6a)-(A6d) with respect to � yields

@x+

@�
= �n�m

n

�
�k +

(n�m) (� � � �)

nb

�
� m�k

n
< 0, (A8a)

@x�

@�
=

m2

n2b
(� � � �) ? 0 if � ? � �, (A8b)

@g+

@�
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(n�m) (� � � 2�)
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7 0 if � ? nb�k + (n�m) � �

2 (n�m)
� �� , (A8c)

@g�

@�
=

m� �
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> 0. (A8d)
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Letting mrs (x+; g+) � ug (x
+; g+) =ux (x

+; g+), di¤erentiating mrs (x+; g+) with respect

to � yields
@

@�
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�
=
@mrs

@g+
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+
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@x+
@x+

@�
. (A9)

From (A8a) and (A8c) together with Assumption 2, mrs (x+; g+) decreases with � as

long as � is lower than or equal to �� . Moreover, di¤erentiating �(� ; � �;m) with respect

to � , we obtain
@

@�
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n
 , (A10)
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We consider three cases with the range in which � can be taken. Because it is am-

biguous whether �� is greater or lower than �̂ , we use � � min f�̂ ; ��g.

Case 1 (� < � �) Di¤erentiating � (�) with respect to � yields
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�
� 1
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b
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Since mrs (x+; g+) is decreasing in � � �� , mrs (x+; g+) � mrs (x�; g�) > 1 when � � � �.

Moreover, k+ � �=b � �k � � �=b > 0 since k+ � �k when � � � �. Thus, we have @�=@�

< 0. Note that � (� �) =
�
�k � � �=b

�
mrs (x�; g�)� �k = 0. Hence, we obtain � (�) > 0 for

any � < � � which yields @
@�
� > 0 for any � < � � if  � 0. Suppose that  < 0. We can

rewrite (A10) as

@

@�
�(� ; � �;m) =

�
�k � � �

b

�
ux
�
x+; g+

� �
mrs

�
x+; g+

�
�

�k
�k � � �=b

�
� n�m

n
 +

�
k+ � �k

�
ug
�
x+; g+

�
+
�
�k � k�

�
ux
�
x�; g�

�
+
� �

b

�
ug
�
x+; g+

�
� ug

�
x�; g�

��
. (A13)

21



Since mrs (x+; g+) > mrs (x�; g�) =
�k

�k���=b > 0, the �rst term of (A13) is positive. As

we assume that  < 0, the second term is also positive. The third and the forth terms are

both positive since k+ > �k and �k > k�, respectively. Since x+ > x� and g+ < g� from

(A7a) and (A7b), using the assumptions that ugg � 0 and ugx � 0, we have

0 = ug
�
x+; g+

�
� ug

�
x+; g+

�
� ug

�
x+; g+

�
� ug

�
x�; g+

�
� ug

�
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�
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�
x�; g�

�
. (A14)

Thus, the �fth term of (A13) is nonnegative. Hence, �(� ; � �;m) is strictly increasing in

� < � � regardless of whether  is positive or negative.

Case 2 (� � � > � �) From (A11a), � (�) < 0 for any � 2 (� �; �� ] if k+ � �=b � 0 or

mrs (x+; g+)� 1 � 0. Consider any � 2 (� �; �� ] such that k+ � �=b > 0 and mrs (x+; g+)
� 1 > 0. Then, we have � (�) < 0 since � (� �) = 0 and @�=@� < 0 for any � 2 [� �; �� ]
from (A12). Thus, �(� ; � �;m) has a negative slope when  � 0. Suppose that  is

positive. Then, we can verify that the signs from the �rst to the forth term in (A13) are

all negative and the �fth term in (A13) is nonpositive from the assumptions that ugg � 0
and ugx � 0. Hence, whenever �� � � > � �, �(� ; � �;m) is strictly decreasing in � .

Case 3 (� > � > � �) Suppose that � = �� . Then, we have @g+

@�
< 0, @x+

@�
< 0, @g�

@�
> 0

and @x�

@�
> 0 for � � �� . Since �(�� ; � �;m) < 0 or u (x+; g+) < u (x�; g�) when � = �� ,

�(� ; � �;m) < 0 for any � � �� . If � = �̂ , then we have x+ < x� and g+ < g� which leads

to u (x+; g+) < u (x�; g�) or equivalently �(� ; � �;m) < 0.

The results derived in Cases 1�3 imply that �(� ; � �;m) is globally maximized at �

= � �.
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