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Abstract

The Box-Cox transformation has been used as a simple method of transforming

dependent variable in ordinary-linear regression circumstances for improving the

Gaussian-likelihood fit and making the disturbance terms of a model reasonably

homoscedastic. The paper introduces a new version of the Box-Cox transformation

and investigates how it works in terms of asymptotic performance and application,

focusing in particular on inference on stationary multivariate ARMA models. The

paper proposes a computational estimation procedure which extends the three-step

Hannan and Rissanen method so as to accommodate the transformation and, for

the purpose of parameter testing, the paper proposes a Monte-Carlo Wald test. The

allied algorithm is applied to a bivariate series of Tokyo stock-price index (Topix)

and the call rate.
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1 Introduction

According to Box and Tidwell (1962), the objective of transformation of dependent vari-

able is to achieve the assumption of the identically normally distributed disturbance terms

and thereby to stabilize the variance and simplify the function form of the model, whereas

the assumption of independence is assumed or treated as if it is satisfied. One of the ear-

lier parametric functional transformation forms known in the literature is the Johnson

family of transformations as presented by Johnson (1949). His transformation formula is

given by x† = γ + δf{(x − ξ)/λ} where x† is a standard normal variable and the func-

tion f depends on no variable parameters and is a monotonic function of x; the family

includes the Pearson type distributions. MacKinnon and Magee (1990) provide applied

examples of the transformation g(x) = sinh−1(x) = log
{
x +

√
x2 + 1

}
which belongs to

the Johnson family. In practical use we need to decide upon a particular function form

among the Johnson family. Box and Tidwell (1962) and Box and Cox (1964) suggest the

following transformation, which is now known as the Box-Cox transformation,

f1(x, λ) =

{
(xλ − 1)/λ λ 6= 0

log x λ = 0
(1.1)

where the parameter λ should be usually estimated in a framework of a specific statistical

model.

Since the Box-Cox transformation requires not only that the x in (1.1) is positive,

but delimits the sample space of the transformed variable in such a way that f1(x, λ) >

−1/λ if λ > 0 and f1(x, λ) < −1/λ if λ < 0 so that it is not consistent with the

assumption that the transformed variable f1(x, λ) is normally distributed. Therefore we

need in its practical applications to assume either that the available observations happen

to be in that range or that they take large positive values (due to a large value of the

mean level) in comparison with the variance of the transformed variable; see Davidson

and MacKinnon (1993). Zarembka (1974) points out “if the probability of such large

negative values is quite low, the error term may still be approximately normal”. To

resolve the problem of limited range of error term, Bickel and Doksum (1981) propose the

transformation f2(x, λ) =
{|x|λsgn(x)− 1

}
/λ ,where the variable x can take negative
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value. But as MacKinnon and Magee (1990) point out, even though this transformation

solves the difficulty of the inconsistency with the normality assumption of the error term,

it has no limit as λ → 0 when x < 0. We focus in this paper on the variable which

takes only positive value. In section 2.1 of this paper we propose a modified Box-Cox

transformation, which has the merit that, while it retains the main characteristics of

the original Box-Cox transformation, the transformed variable has the range (−∞,∞)

so that the transformation is consistent with the normality assumption. Section 2.2

investigates the modified transformation in the framework of the stationary multivariate

ARMA model, where a computational estimation procedure is discussed in detail, whereas

Section 2.3 proposes a Monte-Carlo Wald test for testing the transformation parameter.

Even though innovation Gaussianity, variance stability and model simplicity are de-

sirable properties for time series models to possess, rather few literature deals with

data transformation. Exception is Davidson and MacKinnon (1984, 93) who discuss the

maximum-likelihood estimation for nonlinear autoregression, but the asymptotic proper-

ties of the maximum-likelihood estimation given in Davidson and MacKinnon’s theory is

not extendable to the modified Box-Cox transformation ARMA model unless the MA part

degenerates to the white noise, since their results are essentially based on a Martingale

central limit theorem. In section 3, we investigate the limiting properties of the maximum

Whittle-likelihood estimators for a set-up where a non-linear transformed series is gener-

ated by a stationary Gaussian linear process. The set-up is general enough to include the

modified Box-Cox ARMA model as a special case, and we show the asymptotic normality

of the estimators via Rozanov’s version of central limit theorem for complete regular pro-

cesses. We show that the asymptotic covariance matrix of the estimators is non-standard

[Theorem 3.1] and involves third and forth-order cumulant spectra [Lemma 3.2]. Our

asymptotic result indicates that the standard χ2 asymptotics of the likelihood ratio test

is not applicable to testing of the transformation parameter λ in the modified Box-Cox

ARMA model set-up. Section 4 provides simulation results exhibiting the performance of

the proposed estimation procedure. As for empirical analysis, we investigate in Section 5

a bivariate series composed of the “ratio” series of the Japanese call rate (r(t)/r(t − 1))
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and the Tokyo stock price index (TOPIX(t)/TOPIX(t−1)) based on the model (2.3) by

application of our numerical methods. In particular, our Monte-Carlo Wald test suggests

that the conventional logarithmic data transformation is not supported for both series.

Section 6 is for concluding remarks and Appendix is for mathematical proofs.

As for the notations of the paper, A′ and A∗ denote respectively the transpose and

the conjugate transpose of a matrix A, trB indicates the trace of B and detB is the

determinant of B. The set of all integers is denoted by Z, whereas R+ and R denote the

sets of positive and all real numbers respectively.

2 Smooth Modification

2.1 Modifying the Box-Cox transformation

For positive numbers x and α, set ρ(x, α) = (log x− log α)/ log x; then define x[λ] for the

cases (i) λ = 0, (ii) λ > 0, (iii) λ < 0, respectively by

(i) x[λ] = log x,

(ii)x[λ] =

{
ρ(x, δ)

(
log x + δλ−1

λ
− log δ

)
+ (1− ρ(x, δ))(xλ − 1)/λ, if 0 < x ≤ δ

(xλ − 1)/λ if x > δ,

(iii) x[λ] =





(xλ − 1)/λ if 0 < x ≤ M

ρ(x,M)
(
log x + Mλ−1

λ
− log M

)
+ (1− ρ(x,M))(xλ − 1)/λ, if x > M,

(2.1)

where δ and M are positive numbers chosen sufficiently small and large respectively. Note

that x[λ] thus defined satisfies limλ→0 x[λ] = log x for any x, 0 < x < ∞, and also has the

first derivative with respect to x in case λ > 0 and 0 < x ≤ δ, which is given by

dx[λ]

dx
=

log δ

(log x)2x

{
log x− xλ − 1

λ
+

δλ − 1

λ
− log δ

}
+

log x− log δ

log x

1

x
+

log δ

log x
xλ−1

(2.2)

and is seen to be continuous at x = δ, whereas, for λ < 0 and x ≥ M , the derivative is given

by (2.2) with δ replaced by M . Hence in either case the modified Box-Cox transformation
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is continuously differentiable over the domain 0 < x < ∞. The transformation x[λ] thus

defined has the merit of mapping the set of positive values onto (−∞,∞), and is free

from the restriction on the range imposed by the original Box-Cox transformation. Not

only being formally consistent with the Gaussian error term which takes any value in

the real line, it also retains most of the characteristics of the Box-Cox transformation

by choosing δ and M sufficiently small and large respectively. Figures 1 and 2 illustrate

the modified Box-Cox transformation for certain values of λ; those figures show how the

modified version stands to the original transformation.

��

��

��

��

�

�

�

� ��� ��� ��� ��	 �




� ���




�����������

����������������
	
���
�����������������

��

��

��

��

�

�

�

� ��� ��� ��� ��	 �

���������������

���
�����������������
�

��

��

��

��

�

�

�

� �

Figure 1: Modified Box-Cox transforma-
tion (λ = 0.5, δ = 0.25)
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Figure 2: Modified Box-Cox transforma-
tion (λ = −0.5,M = 1000)

In empirical estimation, we predetermine the values δ and M so as that the interval (δ,

M) is wide enough to contain the range of observations. Consequently the likelihood based

on the modified transformation is equal to the one based on the original transformation.

In the test procedure of Section 2.3, we retain the values of δ and M which are used in

the estimation and consequently most of the generated data values are included in the

interval (δ, M). It is desirable that the test outcome is less sensitive to a particular choice

of δ and M . In this paper, we do not go into the problem of adaptive choice of δ and M .
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2.2 Estimation procedure of the stationary ARMA model involving the
transformation

To investigate the stationary ARMA model involving the modified Box-Cox transforma-

tion introduced in the previous subsection, let {ε(t), t ∈ Z} be a m-vector Gaussian white

noise process with mean 0 and covariance matrix Σ, and suppose that the transformed

series {y[λ](t), t ∈ Z} is generated by a trend-stationary ARMA process

a∑
j=0

A(j)y[λ](t− j) = µ + τt +
b∑

k=0

B(k)ε(t− k), t ∈ Z (2.3)

(A(0) = B(0) = Im),

where y is a m-vector and λ is a m-vector of real numbers, y[λ](t) ≡ (y
[λ1]
1 (t), · · · , y

[λm]
m (t))′,

ε(t) = (ε1(t), · · · , εt(t))
′, the A(j) and B(k) are m × m matrices, µ is a m-vector, and τ

is a coefficient m-vector for trend term. The zeros of the polynomials det

{
a∑

j=0

A (j) zj

}

and det

{
b∑

k=0

B (k) zk

}
are all assumed to be outside of the unit circle so that {y[λ](t)} is

an invertible trend stationary Gaussian process and we assume that the polynomials do

not share common zeros.

Being conditioned on y (0) = · · · = y(−a + 1) = 0, ε (0) = · · · = ε(−b + 1) = 0, the

Gaussian log likelihood function based on (2.3) for given lag-orders a, b is represented by

log(LT ) = −1

2
mT log(2π)− 1

2
T log det Σ

−1

2

T∑
t=1





(
y[λ](t) +

a∑
j=1

A(j)y[λ](t− j)− µ− τt−
b∑

k=1

B(k)ε(t− k)

)′

Σ−1

×
(

y[λ](t) +
a∑

j=1

A(j)y[λ](t− j)− µ− τt−
b∑

k=1

B(k)ε(t− k)

)}
+

T∑
t=1

m∑

l=1

kl(yl(t), λl)

(2.4)

where kl(yl(t), λl) denotes the logarithm of
∣∣∣∂y

[λ]
l (t) /∂yl(t)

∣∣∣ which is the l-th element of

the Jacobian of the transformation from y(t) to y[λ] (t). The maximizer Σ̂ of this log

likelihood is provided as

Σ̂ =
1

T

T∑
t=1

(
y[λ](t) +

a∑
j=1

A(j)y[λ](t− j)− µ− τt−
b∑

k=1

B(k)ε(t− k)

)
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×
(

y[λ](t) +
a∑

j=1

A(j)y[λ](t− j)− µ− τt−
b∑

k=1

B(k)ε(t− k)

)′

(2.5)

[see Anderson (1984, p.62)] and the maximum has the value

maxP log(LT ) = −1

2
mT{log(2π) + 1} − T

2
log det Σ̂ +

T∑
t=1

m∑

l=1

kl(yl(t), λl)

whence we have the concentrated log likelihood function

lT ≡ −T

2
log det Σ̂ +

T∑
t=1

m∑

l=1

kl(yl(t), λl) (2.6)

[see Remark 2.1.]. We use the three-step method proposed by Hannan and Rissanen

(1982) and Hannan and Kavalieris (1984) for the purpose of identifying the ARMA orders

and estimating the ARMA parameters. Since the data-generating process (DGP) (2.3)

involves the parameter λ, we need to modify the algorithm. Our estimation procedure is

constituted of the two main steps. In the first step, we determine the ARMA lags â, b̂,

estimates of the constant term µ̂ and trend term τ̂ . In the second step, we estimate the

A(j)’s and the B(k)’s and λ by means of maximizing (2.6).

Step 1. Set up a system of grid values for the parameter λ. For each grid point, apply

the first and second steps of Hannan-Rissanen(1982)’s three steps method. Calculate the

BIC in the second step of Hannan-Rissanen method, and determine the ARMA lags â, b̂,

the observed ε(t), and all the model parameters for which the BIC is smallest. More

specifically this step consists of the following sub steps (1), (2) and (3) [see Remark 2.2,

2.3].

(1) For each grid point λ, apply the first step of Hannan-Rissanen’s method to obtain the

residual series:

• An observed series {ε(t)}, denoted by{ε̇(t)}, is obtained by

ε̇ (t) =
n∑

j=0

Ȧ (j) y[λ] (t− j)− µ̇− τ̇ t t = n + 1, · · · , T

where Ȧ(0) = Im, the Ȧ(j) are m×m matrices, µ̇ is a m-vector constant term,

τ̇ is a m-vector trend term, and n is AR lag length. We define the coefficient
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matrix Ċ
′
=

(
Ȧ (1) , · · · , Ȧ (n) , µ̇, τ̇

)
, and define, with N = T − n, the N ×m

matrix Ẏ =
(
Y [λ] (n + 1) , · · · , Y [λ] (T )

)′
and N × (mn + 2) matrix Ẋ whose

typical row is
(
−Y [λ]

′
(t− 1) , · · · ,−Y [λ]

′
(t− n) , 1, t

)
. The Ċ is calculated by

regressing Ẏ on Ẋ, namely Ċ =
(
Ẋ′Ẋ

)−1

Ẋ′Ẏ.

• We use the AIC for choosing the AR lag length.

AIC (n) = log det Σ̇n − 2

T

T∑
t=n+1

m∑

l=1

kl(yl(t), λl) +
2 (m2n + 2m + m (m + 1) /2)

T

where Σ̇ṅ = 1
T−ṅ

∑T
τ=n+1 ε̇(τ)ε̇(τ)′. We denote the selected AR-lag length by ṅ.

(2) Apply the second step of Hannan-Rissanen’s method to estimate the variance-covariance

matrix.

• Observed process of ε (t), denoted ε̈ (t) is evaluated by

ε̈ (t) =
a∑

j=0

Ä (j) y[λ] (t− j)−
b∑

k=1

B̈ (k) ε̇ (t− k)− µ̈− τ̈ t, t = s + 1, · · · , T

where Ä(0) = Im, the Ä(j) are m×m matrices, the B̈(k) are m×m matrices, µ̈

is a m-vector constant term, τ̈ is a m-vector trend term, and s = ṅ + max (a, b).

We define the coefficient matrix C̈
′
=

(
Ä (1) , · · · , Ä (a) , B̈ (1) , · · · , B̈ (b) , µ̈, τ̈

)
,

and define, with N = T − s, the N ×m matrix Ÿ =
(
Y [λ] (s + 1) , · · · , Y [λ] (T )

)′

and the N × {(a + b) m + 2} matrix Ẍ whose typical row is(
−Y [λ]

′
(t− 1) , · · · ,−Y [λ]

′
(t− a) , ε̇

′
(t− 1) , · · · , ε̇

′
(t− b) , 1, t

)
. The C̈ is cal-

culated by regressing Ÿ on Ẍ, namely B̈ =
(
Ẍ′Ẍ

)−1

Ẍ′Ÿ.

• For determining the ARMA lag lengths, we evaluate BIC defined by

BIC (a, b) = log det Σ̈a,b − 2

T

T∑
t=s+1

m∑

l=1

kl(yl(t), λl)

+
log T (m2 (a + b) + 2m + m (m + 1) /2)

T

to determine a and b. where Σ̈a,b = 1
T−s

∑T
t=s+1 ε̈(n + t)ε̈(n + t)′.
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• Re-estimate the innovation sequence by fitting the selected ARMA orders; the

re-estimated sequence is denoted also by {ε̈(t)} .

(3) For the grid values of the λ’s at intervals of appropriate width, apply the procedures

(1) and (2) above:

• For each λ and the lag orders a, b, the candidate value of the constant term µ̂

and the trend term τ̂ , candidate initial value of Ä(j), B̈(k), and the sequence

{ε̈(t)} for maximizing (2.6) in the next step are determined and the BIC(a, b)

is calculated.

• The lag orders â, b̂, and µ̂, τ̂ , Ä(j), B̈(k), λ̈, {ε̈(t)} are chosen by the smallest

BIC(a, b) criterion. We determine the coefficient estimates of the constant term

µ̂ = µ̈, and the trend term τ̂ = τ̈ [see Remark 2.4].

Step 2 (Hannan-Rissanen Estimation): Apply the third step of Hannan-Rissanen’s

method to estimate A(a), B(b), and λ by means of maximizing (2.6). Denote α =

vec[µ, τ ], β = vec[A(1), ..., A(a), B(1), ..., B(b)], γ = vec[β, λ], and δ = vec[α, γ].

Since the likelihood equations ∂lT /∂γ = 0 are non-linear in γ, we need an iterative

method for finding a solution [see Remark 2.4].

(4) For fixed λ = λ̈ and given µ̂, τ̂ , we maximize (2.6) with respect to β and obtain β̂.

Since the likelihood equations ∂lT /∂β = 0 are non-linear in β except when b=0, we

use the Gauss-Newton procedure for obtaining the solutions of these equations. At

the (j+1)-th iteration, β are updated as follows

β̂(j+1) = β̂(j) + δj

[
T∑

t=1

∂ε (t)

∂β
Σ−1∂ε (t)

∂β′

]−1

β̂(j),λ̈

[
T∑

t=1

∂ε (t)

∂β
Σ−1ε (t)

]

β̂(j),λ̈

(2.7)

where β̂(j) is an estimate at the j-th iteration, δj is an scale factor at the j-th iter-

ation [see Reincel(1997) pp126-127]. We set the scale factor δj = (1/2)l where l is

the smallest natural number when the log-likelihood increase at j-th iteration. The

iteration terminates if the increase of the log likelihood is less than 0.1, whereas we

regard the iteration not successful if j > 5 or l ≥ 50.
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(5) For fixed β̂ and given µ̂, τ̂ , we maximize (2.6) with respect to λ and obtain λ̂. Since

the likelihood equations ∂lT /∂λ = 0 are non-linear in λ, we use the Quasi-Newton pro-

cedure of Fukushima and Ibaraki (1991) for obtaining the solutions of these equations

[see Remark 2.4]. At the k+1-th iteration, λ are updated as follows

λ̂(k+1) = λ̂(k) + ηk

[
H−1

k

]
λ̂(k),β̂

[
∂lT
∂λ

]

λ̂(k),β̂

where λ̂k is an estimate at the k-th iteration, ηk is an scale factor at the k-th iteration,

and H−1
k is the k-th approximate inverse Hessian matrix [∂2lT /∂λ∂λ′]−1

λ̂(k)β̂
which is

updated by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula.

(6) If the difference of the log-likelihood attained in (5) and (4) is less than 0.1 in modulus,

we stop the optimization, otherwise iterate the step 2 commencing from Â(j), B̂(k),

λ̂ to Ä(j), B̈(k), λ̈.

Remark 2.1. The likelihood function (2.4) is not an exact one since it involves unob-

servable random vectors. See Reincel (1997) for example for the exact likelihood and the

allied asymptotics in the case the transformation is not involved. The use of exact likeli-

hood in the present situation makes the computation amount required in the estimation

and testing procedure impracticable.

Remark 2.2. In respect to ARMA order selection, there seem to be two basic approaches

in the literature; one is based on diagnostic checking (or testing) of the serial and the par-

tial serial covariances basically by the likelihood-ratios and the other is the use of such

information criteria as the AIC [Akaike (1973)] or BIC. Hosoya (1989a; 2002, Chapter

9) maintains that there is no notable merit in using the AIC for selecting among finite-

parameter models.

Remark 2.3. If the initial values of λ are chosen at intervals of suitable width (for ex-

ample, the lattice of width of 0.02 or 0.1) in the step 1, λ̂ obtained in the step 2 does not

depart much from the Step 1 estimate λ̃. We modified the algorithm in the line search

step so as that we reduced the length of the direction vector in case some element of λ

exceeds 3 in the simulation analysis and 4 in the empirical analysis.
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Remark 2.4. We do not estimate the parameter δ = vec[α, γ] simultaneously because

the likelihood equation ∂lT /∂δ = 0 are so complicated that numerical optimization is

hard to attain. Since the Hessian matrix is not block-diagonal between α and β, α and

λ, and β and λ, our separated estimation procedure would not be efficient, but we can

control the numerical convergence better by this way. Furthermore, it is a merit of our

Monte-Carlo test method that it applies even if an efficient estimation method is not used

as long as the estimators are asymptotically normal.

2.3 Monte-Carlo Wald Test

As is seen in the next section, the standard asymptotics does not apply to the model

(2.3), and also it is not easy to evaluate numerically the asymptotic covariance matrix

derived in Theorem 3.1. So we propose a Monte-Carlo Wald test for the purpose of testing

the parameters of the model (2.3). Our main concern is to test the validity of a set of g

restriction of the element of λ. For the null hypothesis λ = λ0, our test procedure is given

as follows:

Step 1. Estimate the model (2.3) under the restriction λ = λ0 for a set of observations

{y(1), · · · , y(T )}.
Step 2. Generate data series based on the model estimated in Step 1:

(1) Generate independent normal random vectors {ε(t)†} with mean 0 and variance-

covariance matrix of the disturbance estimated under the null hypothesis.

(2) For coefficients estimated under the null hypothesis, generate {y(t)†; t = 1, · · · , T}.

Step 3. Estimate λ for the generated series {y(t)†} where the estimate is denoted by λ† .

Step 4: Evaluate the sample variance-covariance matrix of λ†:

(1) Iterate Steps 2 and 3 N times and obtain λ†(1), · · · , λ†(N), and calculate its variance

-covariance matrix Ω† = 1
N

{∑N
k=1(λ

†
(k) − λ̄)(λ†(k) − λ̄)

′
}

. where λ̄ =
∑N

k=1 λ†(k)/N

(2) Finally we obtain the Wald statistic as

W =
(
λ̂T − λ0

)′
Ω†−1

(
λ̂T − λ0

)
.
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where λ̂T is the estimate of λ for the nonrestrictive model based on the original data

{y(t); t = 1, · · · , T}.

(3) We reject the null hypothesis if the calculated Wald statistic is grater than the crit-

ical value form a χ2 distribution with g degrees of freedom, at the chosen level of

significance.

Remark 2.5. As for Monte-Carlo Test, see for example Efron and Tibshirani(1993).

3 Asymptotic theory for transformation-linear pro-

cesses

Davidson and MacKinnon (1984) provide asymptotic properties of the maximum-likelihood

estimators in a nonlinear regression model. They specify a set of conditions for the stan-

dard asymptotics of estimation to hold whereas Amemiya (1977) discusses only rather

in abstract terms. Their information-amount equality, which enables the asymptotic co-

variance matrix of the estimators to be equated to the inverse of the Fisher information

amount, however, relies crucially upon the Martingale property of the first-order deriva-

tive of the log likelihood function; see Davidson and MacKinnon (1984, p.499). But that

property seems valid only in such special cases as a certain class of nonlinear AR processes

with i.i.d. Gaussian error terms, and does not apply to more general circumstances where

the error terms are dependent.

With application to the modified Box-Cox model (2.3) in view and taking an ap-

proach somewhat different from Davidson and MacKinnon’s, this section investigates

limiting properties of the maximum Whittle likelihood estimator for a transformed series

F (y(t), λ), t = 1, · · · , T , in a general linear process set-up. Instead of the time-domain rep-

resentation, we work with the frequency-domain version of the likelihood function, since

the latter approach makes much easier the derivation and enables compact representation

of the asymptotic results when a transformed series is generated by a general stationary

process. The appendix provides sketchy proofs of the results established in this section;

formal proofs are straightforward but require a very lengthy train of arguments. Hosoya
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and Taniguchi (1982, 1993) and Hosoya (1989b, 1997) provide asymptotic properties of

Whittle-likelihood based statistics for linear processes in a very general framework, but

the presence of nonlinear transformation necessitates a certain modification to the proofs

given in those papers.

Let F (y, λ) be a m-vector valued one-to-one function of y ∈ (R+)
m

onto Rm for each λ,

and suppose that the functional form of F (y, λ) is known except for λ and that F (y, λ) and

its Jacobian matrix are three times continuously differentiable with respect to λ except for

a finite set of y. For the model (2.3), we have F (y, λ) = y[λ] and this condition is satisfied.

Although the modified Box-Cox model (2.3) and its applied model in section 5 contains

the time-trend term, we deal only with the case it is absent. The asymptotic theory of this

section is extensible to the trend-stationary model, only making the asymptotic covariance

matrix expression of Theorem 3.1 a somewhat more complicated one. Denote by θ the

generic s-vector parameter subsuming the model parameters except for a m-vector µ and

a n-vector λ [for example, s = m2(a + b) + {m(m + 1)/2} for the model (2.3)]; we assume

that n is not necessarily equal to m for generality. The parameter spaces of θ, µ and λ

are denoted by Θ,M and Λ which are compact sets containing open sets to which the

true values θ0, µ0 and λ0 belong. Suppose that the m-vector F (y(t), λ) is generated by a

short-memory linear process

F (y(t), λ) = µ +
∞∑

j=0

G(j, θ)ε(t− j) (3.1)

where the ε(t), t = ±1,±2, · · · , are Gaussian white noise m-vector process with mean

E(ε(t)) = 0 and covariance matrix Cov(ε(t)) = Σ(θ); the coefficients G(j, θ) are m ×m

matrices such that G(0, θ) ≡ Im.

To focus on the effect of the introduction of the F (·, λ)-transformation, we impose

rather a stringent set of regularity conditions A(i) through (iii) below paralleling to the

one Walker (1964) introduced on the spectral density matrix g(ω, θ) of the linear process

F (y(t), λ)− µ =
∑∞

j=0 G(j, θ)ε(t− j) which is represented by

g(ω, θ) =
1

2π
{
∞∑

j=0

G(j, θ)eiωj}Σ(θ){
∞∑

j=0

G(j, θ)eiωj}∗.

13



While Walker deals only with a scalar-valued process, the extension to vector processes

is straightforward. Setting h(ω, θ) = g(ω, θ)−1 in the sequel, we assume the following:

Assumption A:

(i) The first-order derivatives h(j)(ω, θ) = ∂h(ω, θ)/∂θj, j = 1, · · · , s, exist and are

continuous functions of (ω, θ) on [−π, π]×Θ.

(ii) The second and third order derivatives h(i,j)(ω, θ) = ∂2h(ω, θ)/∂θi∂θj and h(i,j,k)(ω, θ)

= ∂3h(ω, θ)/∂θi∂θj∂θk, i, j, k = 1, · · · , s, exist and are continuous functions of (ω, θ)

on [−π, π]×Nδ(θ
0) where Nδ(θ

0) is a neighbourhood of θ0.

(iii) The coefficients G(j, θ0) in the process (3.1) satisfy:

∞∑
j=0

j‖G(j, θ0)‖ < ∞,

where ‖ · ‖ denotes a Euclidean norm.

(iv) F (y, λ) is differentiable with respect to y and the Jacobian matrix DyF (y, λ) =

{∂Fj(y, λ)/∂yk, j, k = 1, · · · ,m} is positive definite for (y, λ) ∈ (R+)m×Λ. DyF (y, λ)

is third-order differentiable with respect to λ except for a finite set of y-values.

The assumptions A (i) through (iii) are certainly satisfied for identifiable, invertible

stationary ARMA models. Denote the finite Fourier transformation of F (y(t), λ), t =

1, · · · , T, by

F̃T (ω, λ) =
1√
2πT

(
T∑

t=1

F (y(t), λ)eitω

)

and set 1T (ω) = (2πT )−1/2
∑T

t=1 eitω. Denote by ξ the vector of the whole parameters

involved; namely, ξ = (θ′, µ′, λ′)′ so that ξ ∈ Ξ ≡ Θ ×M × Λ. Denote by QT (ξ) the log

Whittle likelihood divided by (−T/2); namely,

QT (ξ) = QT (θ, µ, λ)

= log detΣ(θ) +
1

2π

∫ π

−π

tr[h(ω, θ){F̃T (ω, λ)− 1T (ω)µ}{F̃T (ω, λ)− 1T (ω)µ}∗]dω

− 2

T

T∑
t=1

J(y(t), λ), (3.2)
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where J(y(t), λ) ≡ log detDyF (y(t), λ). (3.3)

The derivatives with respect to λi and/or λj are denoted by superscripts in parentheses

such as F (i)(y(t), λ), F (i,j)(y(t), λ); so that for instance, F (i,j)(y(t), λ) ≡ ∂2F (y(t), λ)/∂λi∂λj.

Set z(t) = F (y(t), λ0) for y(t) generated by (3.1) for ξ = ξ0; similarly, set z(i)(t) =

F (i)(y(t), λ0), z(i,j)(t) = F (i,j)(y(t), λ0), z[k](t) = J (k)(y(t), λ0) and z[k,l](t) = J (k,l)(y(t), λ0),

where z[k](t) and z[k,l](t) are both scalars. The co-spectral density matrices are indi-

cated by c(ω) with superscripts so that, for instance, c·,(i)(ω) and c(i),(j,k)(ω) denote

the m × m density matrices between the processes z and z(i) and between z(i) and

z(j,k) respectively, whereas c
(i),(j),[k]
α1,α2 (ω1, ω2) denotes the third-order spectral density for

{z(i)
α1 (t), z

(j)
α2 (t), z[k](t)}. To express fourth-order cumulant spectral densities, we use such

notation as gα1,α2,α3,α4(ω1, ω2, ω2|·, (i), (j)) to indicate the fourth-order density for α1 to α4-

th elements of the joint (3m)-vector process {z(t)′, z(i)(t)′, z(j)(·)′}′ where 1 ≤ α1, · · · , α4 ≤
3m so that the αj can indicate any component of the 3m-vector, whereas g(ω|·, (i)) de-

notes the 2m×2m spectral density matrix of the joint process {z(t)′, z(i)(t)′}′. We assume

the following assumptions B and C to hold under the null DGP.

Assumption B:

(i) For any i = 1, · · · , n, and for any λ1 ∈ Λ,

(1) there exists δ1 > 0 such that E supλ∈Bδ1
(λ1) ‖ F (i)(y(1), λ) ‖2< ∞, and

E supλ∈Bδ1
(λ1) |J (i)(y(1), λ)|2 < ∞,

(2) the process {supλ∈Bδ(λ1) ‖ F (i)(y(t), λ) ‖} for each i and any λ1 after mean

correction has a spectral density gi,λ1(ω) such that
∫ π

−π
|gi,λ1(ω)|1+c < ∞ for

some c > 0 and has a bounded fourth-order cumulant spectral density,

(3) there exists δ2 > 0 for which E ‖ z(i)(t) ‖2+δ2< ∞, and E ‖ z[i](t) ‖2+δ2< ∞.

(ii) There exists a neighborhood Bδ(λ
0) of the true λ0 and c > 0 such that suprema of

‖ F (i,j)(y(1), λ) ‖2, ‖ F (i,j,k)(y(1), λ) ‖2 and |J (i,j,k)(y(1), λ)|2 over Bδ(λ
0) have finite

expectation for any i, j, k = 1, · · · , n.

(iii) Let Pt denotes the product of a pair of series x(t) and y(t) by Pt(x, y, τ) = x(t)y(t+
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τ); then for any fixed positive integer T1, the joint process {Pt(zi1 , zi2 , τ1), Pt(zi3 , z
(j1)
i4

, τ2),

Pt(1, zi5 , 0), Pt(1, z
[j2]
i6

, 0); i ≤ i1, · · · , i6 ≤ m, 1 ≤ j1, j2 ≤ m,−T1 ≤ τ1, τ2 ≤ T1} has

a second-order spectral density which is bounded and continuous.

(iv) For i, j, k = 1, · · · , n, the third-order cumulant spectral densities for the processes

{zα1 , z
(i)
α2}, {zα1 , z

(i)
α2 , z

(j)
α3 } and {z(i)

α1 , zα2 , z
[j,k]}(1 ≤ α1, α2, α3 ≤ m) exist, respectively

and are bounded. Also the fourth-order cumulant spectral densities for the (3m)-

vector process {z, z(i), z(j)} exist and are bounded.

Assumption C: (i) For any ξ 6= ξ0, limT→∞ E(QT (ξ)−QT (ξ0)) > 0.

(ii) limT→∞
√

TE(∂QT (ξ0)/∂λ) = 0.

Remark 3.1. Assumption C (i) is an identifiability condition whereas C (ii) is cer-

tainly satisfied in case QT is given by the exact Gaussian likelihood since then E(∂QT (ξ0)/∂λ)

= 0 for all T as long as the likelihood is defined. For the Whittle likelihood function, the

assumption is proved under a general condition by Hosoya (1997) in the case where the

process in concern does not involve F-transformation and the proof applies to ∂QT (ξ0)/∂θ

and ∂QT (ξ0)/∂µ. To prove the assumption explicitly for ∂QT (ξ0)/∂λ, certain additional

assumptions are required.

In the sequel, Assumptions A, B and C are assumed to hold.

Lemma 3.1. We have:

p lim
T→∞

∂2QT (ξ0)

∂ξ∂ξ′
= lim

T→∞
E

(
∂2QT (ξ0)

∂ξ∂ξ′

)
≡ Ψ ≡




Ψθθ · ·
Ψθµ Ψµµ ·
Ψθλ Ψµλ Ψλλ


 ,
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where the respective components are given by

Ψθαθβ
=

∫ π

−π

[
tr{h(α,β)(ω, θ0)g(ω, θ0)}+

∂2

∂θα∂θβ

log detΣ(θ0)

]
dω; (3.4)

Ψθαµl
= 0; (3.5)

Ψθαλj
=

1

2π
tr

∫ π

−π

h(α)(ω, θ0){c(j),·(ω) + c·,(j)(ω)}dω; (3.6)

Ψµlµn =
1

2π
{hln(0, θ0) + hnl(0, θ

0)}; (3.7)

Ψµlλi
=

1

2π
tr

[
h(0, θ0){E(z(i)(1))el(m)′ + el(m)E(z(i)(1))′}] (3.8)

Ψλiλj
=

1

2π
tr

∫ π

−π

h(ω, θ0)
[
c(i,j),·(ω) + c(i),(j)(ω) + c(j),(i)(ω) + c·,(i,j)(ω)

]
dω

+
1

2π
tr[h(0, θ0){E(z(i)(1))E(z(j)(1))′ + E(z(j)(1))E(z(i)(1))′}]

+E{z[i,j](1)}, (3.9)

where el(m) denotes the unit column m-vector whose l-th element is unity.

Let H1(ω) be the 2m × 2m block diagonal matrix with h(ω) in the first block and 0

in the second block, and let H2(ω) be the 2m× 2m matrix given by

H2(ω) =

[
0 h(ω)

h(ω) 0

]
,

where h(ω, θ0) is abbreviated as h(ω) or h. Let H3(ω) and H4(ω) be the 3m×3m matrices

respectively given by

H3(ω) =




0 h(ω) 0
h(ω) 0 0

0 0 0


 and H4(ω) =




0 0 h(ω)
0 0 0

h(ω) 0 0


 .

The next lemma establishes the asymptotic normality of the estimator ξ̂.

Lemma 3.2.

T 1/2∂QT (ξ0)

∂ξ

d−→ N(0, Φ) (3.10)

where Φ is the asymptotic covariance matrix whose block components are denoted by

Φ =




Φθθ · ·
Φθµ Φµµ ·
Φθλ Φµλ Φλλ


 ,
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where by means of the notations g′s and c′s introduced in the paragraph preceding to

Assumption B the components are given specifically by

Φθαθβ
= Ψθαθβ

; (3.11)

Φθαµj
= Ψθαµj

= 0; (3.12)

Φθαλi
= 4πtr

∫ π

−π

H1(ω)g(ω|·, (i))H2(ω)g(ω|·, (i))dω

+2π
2m∑

α1,·,α4=1

∫ π

−π

∫ π

−π

H(1)
α1α2

(ω1)H
(2)
α3α4

(ω2)gα1,··· ,α4(−ω1, ω2,−ω2|·, (i))dω1dω2

+
m∑

α1,α2=1

√
2π

∫ π

−π

∫ π

−π

h(α)
α1,α2

(ω)c·,·,[j]α1,α2
(−ω1, ω2)dω1dω2; (3.13)

Φµlµn = Ψµlµn ; (3.14)

Φµiλj
=

m∑
α1,α2=1

∫ π

−π

hα1,i(ω)c·,[j]α2
(ω)dω

+
m∑

α1,··· ,α4=1

√
2π

∫ π

−π

∫ π

−π

hα1,i(ω1)hα2,α3(ω2)[c
·,(j),·
α1,α2,α3

(−ω1, ω2)

+c·,·,(j)α1,α2,α3
(−ω1, ω2)]dω1dω2; (3.15)

Φλiλj
= 4πtr

∫ π

−π

H3(ω)g(ω|·, (i), (j))H4(ω)g(ω|·, (i), (j))dω + c[i],[j](0)

+2π
3m∑

α1,··· ,α4=1

∫ π

−π

∫ π

−π

H3
α1α2

(ω1)H
4
α3α4

(ω2)gα1,··· ,α4(−ω1, ω2,−ω2|·, (i), (j))dω1dω2

+
∑

(k,l)=(i,j),(j,i)

m∑
α1,α2=1

√
2π

∫ π

−π

∫ π

−π

hα1α2(ω)c(k),·,[l]
α1,α2

(ω1, ω2)dω1dω2; (3.16)

Theorem 3.1. Suppose that Φ and Ψ are non-singular; then, under Assumptions A,

B, C, p limT→∞ ξ̂ = ξ0 and
√

T (ξ̂ − ξ0) is asymptotically distributed as N(0, Ψ−1ΦΨ−1).

The representations of Φ and Ψ in Lemmas 3.1 and 3.2 indicate that, although Ψ

is expressed only in terms of the second-order spectral density of F (y(t), λ0) and their

derivatives, Φ involves the third and fourth-order spectra and so in general Φ 6= Ψ. The

result of Theorem 3.1 is thus at variance with the standard asymptotic theory according
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to which the asymptotic distribution should be N(0, Φ−1). The consequence is that the

likelihood-ratio test statistics in general are not asymptotically χ2-distributed under the

null hypothesis λ = λ0. For example, suppose that we are interested in testing the

null hypothesis H0 : ξ = ξ0 for the process {y(t)} generated by (3.1); then the statistic

2 maxξ LT (ξ)/LT (ξ0) is distributed asymptotically as z′Ψz where z is a normal random-

vector with mean 0 and covariance matrix Ψ−1ΦΨ−1.

4 Simulation analysis

In this section, we examine the performance of our algorithm proposed in Section 2.2

by applying it to two examples of the DGP (2.3). For assessment of the performance

of the algorithm, we focus on the lag-orders selection, the small sample distributions of

the estimates of λ, (1,1) element estimates of A(1) and Σ. We also apply a portman-

teau Gaussianity test by Doornik and Hansen (1994) to examine whether the residuals

from the fitted Box-Cox model are reasonably normally distributed. We conducted those

numerical evaluations by means of the super computer SX-7 of Tohoku University Infor-

mation Synergy Center. The programs were written in FORTRAN. We set the number

of replication to be 1500 times, in each of which T is set to be 500. One execution of the

estimation procedure took about 10 minutes.

Remark 4.1. Generation of y(t) series requires inversion of y[λ](t) to y(t) for each given

value of λ. We used the bisection method for numerical inversion.

Case 1. The ARMA coefficients in this example are the same as in Reinsel (1997,

p.318), except that we add the constant term. We set (λ1, λ2) = (−0.5,−0.5) to see how

the negative exponents affect the results whereas the variance-covariance matrix is set as

below. Specifically, suppose that the DGP is given by the bivariate ARMA (2, 1) model

y[λ] (t)+A(1)y[λ] (t− 1)+A(2)y[λ] (t− 2) = µ+ε (t)+B(1)ε (t− 1) where the coefficients

are

A(1) =

[ −1.5 0.6
−0.3 −0.2

]

,

A(2) =

[
0.5 −0.3
−0.7 0.2

]

,

µ =

[ −2.0
−2.0

]

,

B(1) =

[ −0.4 −0.3
0.5 −0.8

]

,
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ε (t) ∼ I.I.D.N

[
2.0 0.5
0.5 1.0

]

.

The parameters of the modification are chosen as (δ,M) = (0.25, 1000). The average rate

of generated data which exceed M is 7.8 percent. The histograms of the estimates are

exhibited in Figures 3 through 6 for the cases where the true ARMA orders are estimated.
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Figure 3: Histogram of λ1
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Figure 4: Histogram of λ2
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Figure 5: Histogram of coefficient (1,1)
of AR(1)
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Figure 6: Histogram of variance (1,1) el-
ement

Figures 3 and 4 show that the estimates λ̂1 and λ̂2 are reasonably centered around the

true value (λ1, λ2) = (−0.5,−0.5) . Figure 5 exhibits the histogram of the (1,1) element

of the estimated coefficient matrix Â(1) where we observe that the estimates tend to have
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a small bias. The histogram of the (1,1) element of the estimated covariance matrix Σ̂

in Figure 6 indicates that the estimates also have a small positive bias. The histograms

based on all estimates are quite similar to those based only on successful order selection.

Case 2. To look into the performance of logarithmic transformation, we set (λ1, λ2) =

(0, 0) and µ = (1.0, 1.0)′ retaining the other aspects as in case 1. Since the corresponding

histograms of the estimates are very similar to the ones for case 1, they are not exhibited.

Tables 1 through 5 summarize the computation performance.

Table 1: Simulation Performance

Simulation case Iteration
calculation successful
successful order selection

Case 1 1500 1296 956
Case 2 1500 1208 952

Table 2: Lag-order selection (case 1)

AR order

MA order

0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 18 13 3 2 0 9 6 2
1 0 0 956 6 0 0 0 0 0 0 0
2 0 277 3 1 0 0 0 0 0 0 0

Table 3: Lag-order selection (case 2)

AR order

MA order

0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 14 11 1 2 2 0 1 0
1 0 2 952 1 0 0 0 0 0 0 0
2 0 215 6 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0 0
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Table 4: Means and Mean Square errors of estimates

Parameter λ1 λ2
coefficient (1,1) variance (1,1)

of AR(1) element

Case 1

estimates for mean -0.498 -0.497 -1.26 1.98
successful order selection MSE 0.000274 0.000348 0.119 0.0990

all estimates
mean -0.499 -0.498 -1.20 1.98
MSE 0.000298 0.000353 0.150 0.0986

true value -0.5 -0.5 -1.5 2.0

Case 2

estimates for mean -0.00127 -0.000890 -1.24 1.97
successful order selection MSE 0.249 0.249 0.116 0.0194

all estimates
mean -0.00122 0.000907 -1.19 1.97
MSE 0.249 0.249 0.142 0.0223

true value 0.0 0.0 -1.5 2.0

Table 5: Doornik and Hansens’ normality test

Number of rejection
Simulation case Significance level

5 % 1 %

Case 1
calculation successful 16 3

successful order selection 11 3

Case 2
calculation successful 10 1

successful order selection 10 1
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Table 1 shows the number of successful simulations, and Table 2 and 3 exhibit the

selected order. They indicate that the order selection is mostly successful. Table 4,

which summarizes the means and mean-square errors of the estimates, indicates that

the estimation procedure we propose works reasonably well. In regard to the residual

normality, we applied the Doornik and Hansen test to the residuals obtained in Cases

1 and 2 simulations. From the results shown in Table 5, we may conclude that our

transformation is efficient for residual normality.

5 Empirical results

This section deals with the time series of bivariate monthly data of Japanese call rate

r(t) and the Tokyo stock price index TOPIX(t). We fit the ARMA model (2.3) to the

ratio data (r(t)/r(t− 1)) and (TOPIX(t)/TOPIX(t− 1))× 100 under two hypotheses.

The model a) leaves (λ1, λ2) to be estimated whereas the model b)imposes the constraint

(λ1, λ2) = (0.0, 0.0). The Monte-Carlo Wald test introduced in Section 2.3 is carried out

to test the model b) against a). Notice that the ratio data are related to the growth rate

of the level data and the Box-Cox transformed ratio data (x(t)/x(t− 1)) is the growth

rate of the transformed level data xλ(t); namely, if f1(y, λ) denotes the ordinary Box-Cox

transformation,

f1(x(t)/x(t− 1), λ) =

{ {xλ(t)− xλ(t− 1)}/{λxλ(t− 1)} if λ 6= 0
log x(t)− log x(t− 1) if λ = 0.

We conducted the estimation of Section 2.2 for the 161 observations over the period stating

from August 1985 through December 1998. The results for a) are as follows: The selected

ARMA lags are ARMA(0, 1), and the estimates are

λ̂ =

[
3.3
0.1

]
, µ̂ =

[
0.00527

5.88

]
, τ̂ =

[
0.000180
0.000344

]
, B̂(1) =

[
0.138 0.186
−0.153 0.303

]
,

Σ̂ =

[
4.73× 10−3 −2.78× 10−4

−2.78× 10−4 5.20× 10−3

]
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and Doornik and Hansens’ normality test statistic is 3.3947. As regards the results for

b), the selected ARMA lags are ARMA(0, 1). The parameter estimates are

µ̂ =

[
0.00306

4.62

]
, τ̂ =

[
0.000284
0.000214

]
, B̂(1) =

[
0.198 0.307
−0.0841 0.301

]
,

Σ̂ =

[
6.78× 10−3 −2.07× 10−4

−2.07× 10−4 2.07× 10−3

]

and the normality test statistic is 37.212.

Remark 5.1. Table 6 lists the BIC values of the model (b) for respective lags. The

ARMA lags (1,0) might be a reasonable candidate, but the BIC of ARMA lags (0,1) is

as small as that of ARMA(1,0). Since the same set of lags is selected for model (a) by

the BIC, we consequently selected the model ARMA(0,1).

Table 6: The BIC-values under the null hypothesis

AR order MA order BIC

1 0 -1.5895
0 1 -1.5875
1 1 -1.5211
2 0 -1.5067
0 2 -1.4950

Figures 7 and 8 respectively exhibit the ratio series of the Japanese call rate r(t) and

Tokyo stock price index TOPIX(t) together with the residuals for the model (a), where

notable heteroscedasticity in the residuals is observed.

Table 7 lists the results of Monte-Carlo Wald test for various δ and M . The test

rejects the model (b) against the model (a) for every (δ,M), and so we may conclude that

model (a) is favoured to model (b). The test shows that it is not suitable to assume that

the bivariate series of the PER and the growth rate of the interest rate are assumed to

be normally distributed; namely the test indicates these are not log-normally distributed.

Characteristically, Doornik and Hansens’ normality test also indicates that model (a) is

superior to model (b).
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Figure 7: TOPIX (the original ratio series and the residuals)

� ��� � �

� ��� � �

� ��� � �

� ��� � �

��� � �

��� � �

��� � �

��� � �

��� � �

� � 	 
�� � �
� � 	 ��� � �
� � 	 ��� � ��� � 	 	�� � �
� � 	 ��� � �
� � � ��� � �
� � � ��� � �
� � � ��� � �
� � � ��� � �
� � � ��� � ��� � � 
�� � �
� � � ��� � �
� � � ��� � �
� � � 	�� � �

� �
���
���

��� �

��� 


��� �

��� �

��� 	

��� �

�

� � �

� � �

� � �

���
�
� �
� �
� � �
�� �
� �
�� �
 � �
!� �
��
"�
#��
$

% &�' ( )�* +�,
- +�, ,
% + . & / % + . ( 01. 01. 2�&43�% & 5�( 0
*�'1670
8 . 2 9

Figure 8: Call Rate (the original ratio series and the residuals)

Table 7: Monte-Carlo Wald test statistic

Modified Box-Cox Iteration
transformation parameter successful Wald test statistic

δ M (out of 500)

0.85 1000 442 15.980∗∗

0.90 1000 441 12.696∗∗

0.10 110 462 16.743∗∗
∗∗ : 1% significance

25



6 Conclusion

In this paper, we dealt with transformation linear stationary processes. We exhibit the

method of finding the Gaussian ARMA model of best fit to data by using a modified Box-

Cox transformation. Especially we show that the assumption of the Gaussian ARMA

model is not appropriate for the bivariate series of the PER and the growth rate of the

interest rate.

Franses and McAleer (1998) investigate the Box-Cox transformation on the augmented

Dickey-Fuller regression. They however, leave open the issue of what is the most appropri-

ate non-linear transformation. Recently de Jong (2003) discusses the regression estimation

of the logarithmically transformed unit-root processes. The extension to non-stationary

process of our approach remains open. Yang (2006) proposes a modified family of power

transformation for positive x

h(x, λ) =

{
(xλ − x−λ)/2λ λ 6= 0

log x λ = 0

which removes the bound of the sample space in the original Box-Cox transformation.

Furthermore, there are two problems remaining to be investigated. If the transforma-

tion linear process (3.1) is autoregressive, the asymptotic result of Theorem 3.1 should

be reduced to the standard one as in Davidson and MacKinnon (1984). Since the Whit-

tle likelihood reduces to the likelihood Davidson and MacKinnon dealt with except for

asymptotically negligible terms, the equivalence is anticipated, but the rigorous proof

Ψ = Φ is required. Another problem of interest is how to evaluate numerically the terms

given in formulas of Lemmas 3.1 and 3.2 so that numerical comparison of the asymptotic

covariance matrix with the standard one can be made. Spectral densities involved in those

formulas could be estimated by means of Monte-Carlo generated y(t)’s, but no practicable

numerical procedure is yet available.
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A. Appendix

Proof of Lemma 3.1. The relation (3.4) follows from Hosoya and Taniguchi (1982,

p.137). Since 2π|1T (ω)|2 is nothing but the Fejér kernel, the relation (3.7) is the conse-

quence of the equalities:

lim
T→∞

E

[
∂2QT

∂µl∂µn

]
= lim

T→∞
E

[
1

2π
tr

∫ π

−π

h(ω, θ0)|1t(ω)|2 {el(m)en(m)′ + en(m)el(m)′} dω

]

=
1

2π
{hnl(0, θ

0) + hln(0, θ0)}.

Similarly the property of the Fejér kernel implies (3.5) and (3.8). As for (3.9),

lim
T→∞

E

[
∂2QT

∂λi∂λj

]

= lim
T→∞

E[
1

2π
tr

∫ π

−π

h(ω, θ0){F̃ (i,j)(F̃ − µ1T )∗ + (F̃ (i) − E(F̃ (i)))(F̃ (j) − E(F̃ (j)))∗

+(F̃ (j) − E(F̃ (j)))(F̃ (i) − E(F̃ (i)))∗ + (F̃ − µ1T )F̃ (i,j)∗}]dω

+
1

2π
tr[h(0, θ0){E(z(i)(1))E(z(j)(1))′ + E(z(j)(1))E(z(i)(1))′}] + E(z[i,j](1))

where the first member on the right hand side is equal to

1

2π
tr

∫ π

−π

h(ω, θ0)[c(i,j),·(ω) + c(i),(j)(ω) + c(j),(i)(ω) + c·,(i,j)(ω)]dω.

Lastly (3.6) follows from the relations:

lim
T→∞

E

[
∂2QT

∂θα∂λj

]
= lim

T→∞
E

[
1

2π
tr

∫ π

−π

h(α){F̃ (j)(F̃ − µ1T )∗ + (F̃ − µ1T )F̃ (j)∗}dω

]

=
1

2π
tr

∫ π

−π

h(α){c(j),·(ω) + c·,(j)(ω)}dω. 2

Before proceeding to the proof of Lemma 3.2, it is useful to introduce some concepts

related to central limit theorem for strictly stationary processes and to establish Lemma

A below. In view that the process {y(t)} generated by (3.1) is strictly stationary and

so are {g(yt)} for any measurable function g, the proof of the central limit theorem

relies essentially upon the regularity concepts defined for strictly stationary processes.

27



Set z(t) ≡ F (y(t), λ0) − µ0 when y(t) is generated by (3.1) for θ = θ0 and µ = µ0;

then evidently the process {z(t)} is a strictly stationary Gaussian process. To a strictly

stationary process {w(t)}, there is associated a set of shift transformations U = {Ut, t ∈ Z}
such that Utw(s) = w(t + s) for any s ∈ Z. The process {w(t)} is said to be metrically

transitive if for any set A invariant with respect to the transformation set U , it holds

either Pr(A) = 1 or Pr(A) = 0; see Rozanov (1967). If {w(t)} is metrically transitive and

E|w(t)| < ∞, then limT→∞ 1
T

∑T
t=1 w(t) = E(w(0)) with probability 1; namely a strong

law of large number holds. Denote by F t
−∞ and F∞

t+τ the σ-fields generated by {w(s), s ≤
t} and {w(s), s ≥ t + τ} respectively. Set αw(τ) = sup |P (A ∩ B) − P (A)P (B)|, where

the supremum is over A ∈ F t
−∞ and B ∈ F∞

t+τ . The process {w(t)} is said be completely

regular if limτ→∞ αw(τ) = 0. If the assumption A (iii) holds, {z(t)} is a metrically

transitive and completely regular Gaussian process. Furthermore αz(τ) = O(τ−3) as is

shown in Lemma A below.

Denote H(t−) and H(t+) be the closed linear subspaces spanned by {z(s), s ≤ t} and

{z(s), s ≥ t} in the Hilbert space of all random variables with second moment defined on

the probability space on which {z(t), t ∈ Z} is defined. Also denote by Fz(t−) and Fz(t+)

the σ-fields generated by {z(s), s ≤ t} and {z(s), s ≥ t} respectively. Let the notation

ξ ∈ Fz(t−) indicate that ξ is measurable with respect to Fz(t−). Define the index ρ by

ρ[Fz(t−),Fz((t + τ)+)] = sup
ξ1∈Fz(t−),ξ2∈Fz((t+τ)+)

corr(ξ1, ξ2)

where corr denotes the ordinary correlation coefficient. In view of Theorems 10.1 and

10.2 of Rozanov (1964, p.181), since the process {z(t)} is Gaussian,

ρ[Fz(t−),Fz((t + τ)+)] = ρ[Hz(t−), Hz((t + τ)+)] ≥ αz(τ). (A.1)

Moreover Rosanov’s Lemma 10.2 (1964, p.182) gives the following important result:

sup
f,g

E{f(z(t))g(z(t + s))} = corr(z(t), z(t + s)) (A.2)

where f and g real-valued functions such that E(f(z(t))) = E(g(z(s))) = 0 and

V ar(f(z(t))) = V ar(g(z(s))) = 1; namely, correlation between transformed Gaussian
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variables does not exceed the correlation between original Gaussian variables.

Lemma A. If Assumption A(iii) holds, then αF (τ) = O (τ−3).

Proof. Let {aj, j = 0, 1, 2, · · · , } be a sequence of real numbers for which
∑∞

j=0 j|aj| <
∞; then it is easy to see that there is M such that j2|aj| < M for all j. Set ν(t) =
∑∞

j=0 ajεk(t− j), for any 1 ≤ k ≤ m. Then we have

|Cov(ν(t), ν(t + τ)| ≤
∞∑

j=τ

a2
j ,

where the right-hand side member is of order

O(
∞∑

j=τ

j−4) = O(τ−3).

Consequently, ρ[HF (t−), HF ((t + τ)+)] = O(τ−3). The lemma follows then from (A.1).

2.

The next theorem was given by Rosanov (1967, p191).

Theorem A: Suppose a strictly stationary process {ξ(t)} satisfies the conditions αξ(τ) =

O(τ−1−δ) and E‖ξ(0)‖2+ε < ∞ for some δ > 0 and ε > 4/δ and suppose the spectral den-

sity matrix is bounded and continuous and nondegenerate at zero, then the central limit

theorem is applicable to {ξ(t)}.
Proof of Lemma 3.2. (1) At first, we deal with the relations (3.11)-(3.16). The proof

for the relation (3.11) proceeds quite in parallel to Walker (1964, p.371-6). Since F̃ (ω, λ0)

is normally distributed, we have (3.12). The relation Φµlµn = Ψµlµn follows from:

Φµlµm = lim
T→∞

TE

[
tr

∫ π

−π

hel(m)1T{F̃ − 1T µ}∗dω · tr
∫ π

−π

hen(m)1T{F̃ − 1T µ}∗dω

]

= 2π{hln(0, θ0) + hnl(0, θ
0)}.

We have (3.13) by directly evaluating

Φθαλi
= lim

T→∞
TCov

[
tr

∫ π

−π

h(α)(F̃ − 1T µ)(F̃ − 1T µ)∗dω,

tr

∫ π

−π

h{(F̃ (i) − EF̃ (i)))(F̃ − 1T µ)∗ + (F̃ − 1T µ)(F̃ (i) − E(F̃ (i))∗)}dω +
1√
2πT

∫ π

−π

J̃ (i)dω

]
.
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where F̃ , F̃ (i), J̃ (j) are all evaluated at λ = λ0. By means of the matrices H3(ω) and

H4(ω), we have (3.16) by evaluating

Φλi,λj
= lim

T→∞
TCov

[
tr

∫ π

−π

h{(F̃ (i) − E(F̃ (i))}(F̃ − 1T µ)∗ + (F̃ − 1T µ)(F̃ (i) − E(F̃ (i)))∗}dω

+
1√
2πT

∫ π

−π

J̃ (i)dω,

tr

∫ π

−π

h{(F̃ (j) − E(F̃ (j))(F̃ − 1T µ)∗ + (F̃ − 1T µ)(F̃ (j) − E(F̃ (j)))∗}dω +
1√
2πT

∫ π

−π

J̃ (j)dω

]
.

Finally we have (3.15) by directly evaluating

Φµi,λj
= lim

T→∞
TCov

[
tr

∫ π

−π

hem(i)(F̃ − 1T µ)∗,

tr

∫ π

−π

h{(F̃ (j) − E(F̃ (j))(F̃ − 1T µ)∗ + (F̃ − 1T µ)(F̃ (j) − E(F̃ (j)))∗}dω +
1√
2πT

∫ π

−π

J̃ (j)dω

]
.

(2) Secondly, asymptotic normality is proved as follows. Denote by St(a) the linear com-

bination of {Pt(Fi1 , Fi2 , τ1), Pt(Fi3 , F
(j1)
i4

, τ2), Pt(1, Fi5 , 0), Pt(1, J
(j2)
i6

, 0); i ≤ i1, · · · , i6 ≤
m, 1 ≤ j1, j2 ≤ m,−T1 ≤ τ1, τ2 ≤ T1} with coefficient vector a; see the definition of Pt in

assumption B(iii). As in Walker (1964) and Hosoya (1989b, 1997), the asymptotic normal-

ity of T 1/2
{

∂QT (ξ0)
∂ξ

− E ∂QT (ξ0)
∂ξ

}
holds if for every a 6= 0,

∑T
t=1{St(a)−E(St(a))}/√T has

a limiting normal distribution by means of the Bernstein lemma. Thanks to Assumption

B (i)(3) and Gaussianity of F , the moment condition is satisfied, whereas the spectral

condition is assumed in B(iii). Since St(a) is a function of F (t, λ0), it follows form (A.2)

and Lemma A that αs(τ) = O(τ−(1+δ)). Hence Theorem A is able to be applied to the

process {St(a)}. Finally, the asymptotic normality of
√

T∂QT (ξ0)/∂ξ follows from As-

sumption C (ii) and Remark 3.1. 2

Proof of Theorem 3.1. (1) By a train of arguments parallel to Walker (1964,

pp.367-370), the consistency proof is carried out in view of Assumption C (i) by show-

ing that for all ξ1, ξ2 ∈ Ξ such that |ξ2 − ξ1| < δ there exists Hδ,T (y, ξ1) such that

|QT (ξ2) − QT (ξ1)| < Hδ,T (y, ξ1) and limδ→0 EHδ,T (y, ξ1) = 0 uniformly in T and also

limT→∞ V arHδ,T (y, ξ1) = 0 for fixed δ. Let l be the dimension of the vector ξ and Q
(i)
T

the partial derivative with respect to ξi. If |ξ2 − ξ1| < δ, we have |QT (ξ2) − QT (ξ1)| ≤
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δ
∑l

i=1 |Q(i)
T (ξκ)| where ξκ = κξ2+(1−κ)ξ1 (0 < κ < 1), but Assumptions A (i) and B (ii)

guarantee that E
∑l

i=1 supξ∈Bδ(ξ1) |Q(i)
T (ξ)| is bounded and also it follows from Assump-

tion B (ii) in view of Hosoya (1997, p.131, Lemma 3.3) that V ar
∑l

i=1 supξ∈Bδ(ξ1) |Q(i)
T (ξ)|

tends to 0 as T → ∞, where Bδ(ξ1) denotes the ball of center ξ1 and radius δ. Hence

if we set Hδ,T (y, ξ1) = δ
∑l

i=1 supξ∈Bδ(ξ1) |Q(i)
T (ξ)|, the consistency of ξ̂ follows. (2) The

limiting distribution of
√

T (ξ̂ − ξ0) is derived by means of the standard technique of the

Taylor expansion of ∂Q(ξ̂)/∂ξ = 0 around ξ = ξ0 in view that ξ̂ is consistent and that

∂3QT (ξ)/∂ξ∂ξ′∂ξk is bounded in probability in a neighborhood of ξ0 thanks to Assumption

B (ii)(1) and (2). Thus the theorem is concluded. 2
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